• Title/Summary/Keyword: Model sequencing

Search Result 294, Processing Time 0.022 seconds

A ketogenic diet reduces body weight gain and alters insulin sensitivity and gut microbiota in a mouse model of diet-induced obesity

  • Sumin Heo;Soo Jin Yang
    • Journal of Nutrition and Health
    • /
    • v.56 no.4
    • /
    • pp.349-360
    • /
    • 2023
  • Purpose: Ketogenic diets (KDs) have anti-obesity effects that may be related to glucose control and the gut microbiota. This paper hypothesizes that KD reduces body weight and changes the insulin sensitivity and gut microbiota composition in a mouse model of diet-induced obesity. Methods: In this study, C57BL/6 male mice were assigned randomly to 3 groups. The assigned diets were provided to the control and high-fat (HF) diet groups for 14 weeks. The KD group was given a HF diet for 8 weeks to induce obesity, followed by feeding the KD for the next 6 weeks. Results: After the treatment period, the KD group exhibited a 35.82% decrease in body weight gain compared to the HF group. In addition, the KD group demonstrated enhanced glucose control, as shown by the lower levels of serum fasting glucose, serum fasting insulin, and the homeostatic model assessment of insulin resistance, compared to the HF group. An analysis of the gut microbiota using 16S ribosomal RNA sequencing revealed a significant decrease in the proportion of Firmicutes when the KD was administered. In addition, feeding the KD reduced the overall alpha-diversity measures and caused a notable separation of microbial composition compared to the HF diet group. The KD also led to a decrease in the relative abundance of specific species, such as Acetatifactor_muris, Ligilactobacillus_apodemi, and Muribaculum_intestinale, compared with the HF group. These species were positively correlated with the body weight, whereas the abundant species in the KD group (Kineothrix_alysoides and Saccharofermentans_acetigenes) showed a negative correlation with body weight. Conclusion: The current study presents supporting evidence that KD reduced the body weight and altered the insulin sensitivity and gut microbiota composition in a mouse model of diet-induced obesity.

Analysis of the mechanism of fibrauretine alleviating Alzheimer's disease based on transcriptomics and proteomics

  • Lu Han;Weijia Chen;Ying Zong;Yan Zhao;Jianming Li;Zhongmei He;Rui Du
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.361-377
    • /
    • 2024
  • The dried rattan stem of the Fibraurea Recisa Pierre plant contains the active ingredient known as fibrauretine (FN). Although it greatly affects Alzheimer's disease (AD), the mechanism of their effects still remains unclear. Proteomics and transcriptomics analysis methods were used in this study to determine the mechanism of FN in the treatment of AD. AD model is used through bilateral hippocampal injection of Aβ1-40. After successful modeling, FN was given for 30 days. The results showed that FN could improve the cognitive dysfunction of AD model rats, reduce the expression of AE and P-Tau, increase the content of acetylcholine and reduce the activity of acetylcholinesterase. The Kyoto Encyclopedia of Genes and Genomes enriched differentially expressed genes and proteins are involved in signaling pathways including metabolic pathway, AD, pathway in cancer, PI3K-AKT signaling pathway, and cAMP signaling pathway. Transcriptomics and proteomics sequencing resulted in 19 differentially expressed genes and proteins. Finally, in contrast to the model group, after FN treatment, the protein expressions and genes associated with the PI3K-AKT pathway were significantly improved in RT-qPCR and Western blot and assays. This is consistent with the findings of transcriptomic and proteomic analyses. Our study found that, FN may improve some symptoms of AD model rats through PI3K-AKT signaling pathway.

BSA-Seq Technologies Identify a Major QTL for Clubroot Resistance in Chinese Cabbage (Brassica rapa ssp. pekinesis)

  • Yuan, Yu-Xiang;Wei, Xiao-Chun;Zhang, Qiang;Zhao, Yan-Yan;Jiang, Wu-Sheng;Yao, Qiu-Ju;Wang, Zhi-Yong;Zhang, Ying;Tan, Yafei;Li, Yang;Xu, Qian;Zhang, Xiao-Wei
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.41-41
    • /
    • 2015
  • BSA-seq technologies, combined Bulked Segregant Analysis (BSA) and Next-Generation Sequencing (NGS), are making it faster and more efficient to establish the association of agronomic traits with molecular markers or candidate genes, which is the requirement for marker-assisted selection in molecular breeding. Clubroot disease, caused by Plasmodiophora brassicae, is a serious threat to Brassica crops. Even we have breed new clubroot resistant varieties of Chinese cabbage (B. rapa ssp. pekinesis), the underlying genetic mechanism is unclear. In this study, an $F_2$ population of 340 plants were inoculated with P. brassicae from Xinye (Pathotype 2 on the differentials of Williams). Resistance phenotype segregation ratio for the populations fit a 3:1 (R:S) segregation model, consistent with a single dominant gene model. Super-BSA, using re-sequencing the parents, extremely R and S DNA pools with each 50 plants, revealed 3 potential candidate regions on the chromosome A03, with the most significant region falling between 24.30 Mb and 24.75 Mb. A linkage map with 31 markers in this region was constructed with several closely linked markers identified. A Major QTL for clubroot resistance, CRq, which was identified with the peak LOD score at 169.3, explaining 89.9% of the phenotypic variation. And we developed a new co-segregated InDel marker BrQ-2. Joint BSA-seq and traditional QTL analysis delimited CRq to an 250 kb genomic region, where four TIR-NBS-LRR genes (Bra019409, Bra019410, Bra019412 and Bra019413) clustered. The CR gene CRq and closely linked markers will be highly useful for breeding new resistant Chinese cabbage cultivars.

  • PDF

Endless debates on the extant basal-most angiosperm (현생 기저 피자식물에 대한 끝나지 않는 논쟁)

  • Kim, Sangtae
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • Recognizing a basal group in a taxon is one of the most important factors involved in understanding the evolutionary history of that group of life. Many botanists have suggested a sister to all other angiosperms to understand the origin and rapid diversification of angiosperms based on morphological and fossil evidence. Recent technical advances in molecular biology and the accumulation of molecular phylogenetic data have provided evidence of the extant basal-most angiosperm which is a sister to all other angiosperms. Although it is still arguable, most plant taxonomists agree that Amborella trichopoda Baill., a species (monotypic genus and monotypic family) distributed in New Caledonia, is a sister to all other extant angiosperms based on evidence from the following molecular approaches: 1) classical phylogenetic analyses based on multiple genes (or DNA regions), 2) analyses of a tree network of duplicated gene families, and 3) gene-structural evidence. As an alternative hypothesis with relatively minor evidence, some researchers have also suggested that Amborella and Nymphaeaceae form a clade that is a sister to all other angiosperms. Debate regarding the basal-most angiosperms is still ongoing and is currently one of the hot issues in plant evolutionary biology. We expect that sequencing of the whole genome of Amborella as an evolutionary model plant and subsequent studies based on this genome sequence will provide information regarding the origin and rapid diversification of angiosperms, which is Darwin's so called abominable mystery.

Korea Brassica Genome Project: Current Status and Prospective (배추 유전체열구의 현황과 전망)

  • Choi, Su-Ryun;Park, Jee-Yong;Park, Beom-Seok;Kim, Ho-Il;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.153-160
    • /
    • 2006
  • Brassica rape is an important species used as a vegetable, oil, and fodder worldwide. It is related phylogenically to Arabidopsis thaliana, which has already been fully sequenced as a model plant. The 'Multinational Brassica Genome Project (MBGP)'was launched by the international Brassica community with the aim of sequencing the whole genome of B. rapa in 2003 on account of its value and the fact that it has the smallest genome among the diploid Brassica. The genome study was carried out not only to know the structure of genome but also to understand the function and the evolution of the genes comprehensively. There are two mapping populations, over 1,000 molecular markers and a genetic map, 2 BAC libraries, physical map, a 22 cDHA libraries as suitable genomic materials for examining the genome of B. rapa ssp. pekinensis Chinese cabbage. As the first step for whole genome analysis, 220,000 BAC-end sequences of the KBrH and KBrB BAC library are achieved by cooperation of six countries. The results of BAC-end sequence analysis will provide a clue in understanding the structure of the genome of Brassica rapa by analyzing the gene sequence, annotation and abundant repetitive DHA. The second stage involves sequencing of the genetically mapped seed BACs and identifying the overlapping BACs for complete genome sequencing. Currently, the second stage is comprises of process genetic anchoring using communal populations and maps to identify more than 1,000 seed BACs based on a BAC-to-BAC strategy. For the initial sequencing, 629 seed BACs corresponding to the minimum tiling path onto Arabidopsis genome were selected and fully sequenced. These BACs are now anchoring to the genetic map using the development of SSR markers. This information will be useful for identifying near BAC clones with the seed BAC on a genome map. From the BAC sequences, it is revealed that the Brassica rapa genome has extensive triplication of the DNA segment coupled with variable gene losses and rearrangements within the segments. This article introduces the current status and prospective of Korea Brassica Genome Project and the bioinformatics tools possessed in each national team. In the near future, data of the genome will contribute to improving Brassicas for their economic use as well as in understanding the evolutional process.

Selection of Probiotic Bacteria from Yulmoo Kimchi Using a Stimulated Human Intestinal Model System (인체장모델시스템에 의한 열무김치로부터 프로바이오틱스 균주 선발)

  • Kang, Mi-Ran;Kim, Da-Ram;Kim, Tae-Woon;Park, Sung-Hee;Kim, Hyun-Ju;Jang, Ja-Young;Han, Eung-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.3
    • /
    • pp.396-401
    • /
    • 2012
  • To select potent probiotics from lactic acid bacteria in Yulmoo Kimchi, an in vitro and stimulated human intestinal model system (SHIMS) test were performed. One Leuconostoc mesenteroides strain from five strains of Yulmoo Kimchi and one Lactobacillus plantarum from 12 strains of KCTC and KCCM were selected according to survival in acidic and bile salts conditions. Between the two species, Leu. mesentroides displayed higher survival activity in a SHIMS test. The strain was identified as Leu. mesentroides by 16S rRNA sequencing and was designated as Leu. mesentroides K01.

The study on implementation of modified SCORM standard for effective design of goal driven personalized e-learning system (목표지향 개인화 이러닝 시스템의 효율적인 설계를 위한 SCORM 표준의 수정제안 구현 연구)

  • Lee, MiJoung;Kim, KiSeok
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.3
    • /
    • pp.41-51
    • /
    • 2009
  • In this thesis, we suggested an e-learning model, which is named 'goal driven personalized e-learning system' to improve educational effects, and implemented it. The system makes the learner choose the learning goal which could be a motivational power for learning, so it enabled self-directed learning. In order to implement the system, we proposed new standards related to personalization by modifying SCORM 2004 standard. New standards stand for the statistics on learning objects usage, a goal for driving learning. and information of the contents model and the sequencing information model, which are parts of the system previously suggested. We implemented the system, and then proved that personalize e-learning is possible by showing that the system could offer a learning path individually to learners who have different characteristics.

  • PDF

CRISPR/Cas9-mediated generation of a Plac8 knockout mouse model

  • Lee, HyunJeong;Kim, Joo-Il;Park, Jin-Sung;Roh, Jae-il;Lee, Jaehoon;Kang, Byeong-Cheol;Lee, Han-Woong
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.279-287
    • /
    • 2018
  • Placenta specific 8 (PLAC8, also known as ONZIN) is a multi-functional protein that is highly expressed in the intestine, lung, spleen, and innate immune cells, and is involved in various diseases, including cancers, obesity, and innate immune deficiency. Here, we generated a Plac8 knockout mouse using the CRISPR/Cas9 system. The Cas9 mRNA and two single guide RNAs targeting a region near the translation start codon at Plac8 exon 2 were microinjected into mouse zygotes. This successfully eliminated the conventional translation start site, as confirmed by Sanger sequencing and PCR genotyping analysis. Unlike the previous Plac8 deficient models displaying increased adipose tissue and body weights, our male Plac8 knockout mice showed rather lower body weight than sex-matched littermate controls, though the only difference between these two mouse models is genetic context. Differently from the previously constructed embryonic stem cell-derived Plac8 knockout mouse that contains a neomycin resistance cassette, this knockout mouse model is free from a negative selection marker or other external insertions, which will be useful in future studies aimed at elucidating the multi-functional and physiological roles of PLAC8 in various diseases, without interference from exogenous foreign DNA.

Therapeutic effects of paeoniflorin on irritable bowel syndrome in rats

  • Lei Wang;Jinyan Lei;Zeyu Zhao;Jianwei Jia;Li Wang
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.23.1-23.16
    • /
    • 2023
  • Background: Irritable bowel syndrome (IBS) is a functional bowel disorder (FBD). Objectives: To assess the therapeutic effects of paeoniflorin (PF) on IBS in rats. Method: Sixty male Sprague-Dawley rats were randomly divided into normal, model, positive drug, low-dose PF, medium-dose PF and high-dose PF groups (n = 10). After gavage for 2 consecutive weeks, the effect of PF on abdominal pain symptoms was assessed based on the abdominal withdrawal reflex (AWR) score, fecal water content and pathological changes in colon tissues. D-lactate, interleukin-1β (IL-1β), transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, and phosphorylated nuclear factor kappa B (p-NF-κB) p65 was detected by Western blotting. The abundance and diversity changes of intestinal flora were explored using 16S ribosomal RNA sequencing. Result: In PF groups, the mucosal morphology of colon tissues was intact, and the glands were arranged neatly and structured clearly, without obvious inflammatory cell infiltration. Compared with the model group, PF groups had significantly elevated pain threshold, and mRNA and protein levels of zonula occludens-1 (ZO-1) and occludin, decreased AWR score at 20 mmHg pressure, fecal water content, mRNA levels of IL-1β, TGF-β, and TNF-α, protein level of p-NF-κB p65 and level of serum D-lactate, and reduced levels of serum IL-1β, TGF-β, and TNF-α (p < 0.05, p < 0.01). PF groups had higher abundance of Lactobacillus, Akkermansia, Alistipes, and Bacteroides, but lower abundance of Desulfovibrio, Parasutterella, and Enterococcus than those of the model group. Conclusions: PF exerts therapeutic effects on IBS in rats probably by regulating the intestinal flora, and then up-regulating the expressions of ZO-1 and occludin in colon tissue while down-regulating the levels of IL-1β, TGF-β, TNF-α, D-lactate and p-NF-κB p65.

Method of Deriving Activity Relationship and Location Information from BIM Model for Construction Schedule Management (공정관리 활용을 위한 BIM모델의 공정별 수순 및 위치정보 추출방안)

  • Yoon, Hyeongseok;Lee, Jaehee;Hwang, Jaeyeong;Kang, Hyojeong;Park, sangmi;Kang, Leenseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.2
    • /
    • pp.33-44
    • /
    • 2022
  • The simulation function by the 4D system is a representative BIM function in the construction stage. For the 4D simulation, schedule information for each activity must be created and then linked with the 3D model. Since the 3D model created in the design stage does not consider schedule information, there are practical difficulties in the process of creating schedule information for application to the construction stage and linking the 3D model. In this study, after extracting the schedule information of the construction stage using the HDBSCAN algorithm from the 3D model in the design stage, authors propose a methodology for automatically generating schedule information by identifying precedence and sequencing relationships by applying the topological alignment algorithm. Since the generated schedule information is created based on the 3D model, it can be used as information that is automatically linked by the common parameters between the schedule and the 3D model in the 4D system, and the practical utility of the 4D system can be increased. The proposed methodology was applied to the four bridge projects to confirm the schedule information generation, and applied to the 4D system to confirm the simplification of the link process between schedule and 3D model.