• Title/Summary/Keyword: Model reference controller

Search Result 536, Processing Time 0.031 seconds

A High-Performance Induction Motor Drive with 2DOF I-PD Model­Following Speed Controller

  • El-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.217-227
    • /
    • 2004
  • A robust controller that combines the merits of the feed-back, feed-forward and model-following control for induction motor drives utilizing field orientation control is designed in this paper. The proposed controller is a two-degrees-of­freedom (2DOF) integral plus proportional & rate feedback (I-PD) speed controller combined with a model-following (2DOF I-PD MFC) speed controller. A systematic mathematical procedure is derived to find the parameters of the 2DOF I-PD MFC speed controller according to certain specifications for the drive system. Initially, we start with the I-PD feed­back controller design, then we add the feed-forward controller. These two controllers combine to form the 2DOF I-PD speed controller. To realize high dynamic performance for disturbance rejection and set point tracking characterisitics, a MFC controller is designed and added to the 2DOF I-PD controller. This combination is called a 2DOF I-PD MFC speed controller. We then study the effect of the 2DOF I-PD MFC speed controller on the performance of the drive system under different operating conditions. A computer simulation is also run to demonstrate the effectiveness of the proposed controller. The results verify that the proposed 2DOF I-PD MFC controller is more accurate and more reliable in the presence of load disturbance and motor parameter variations than a 2DOF I-PD controller without a MFC. Also, the proposed controller grants rapid and accurate responses to the reference model, regardless of whether a load disturbance is imposed or the induction machine parameters vary.

Analysis of Decoupling Method in DQ Transform-based for Grid Connected Inverter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.924-925
    • /
    • 2008
  • There are many types of grid-connected inverter controllers, PI controller based is the most popular methods. But, a common PI control is produced zero-steady state error and phase delay in sinusoidal reference. Synchronous reference frame or DQ transform based controller is capable for reducing both of zero-steady state error and phase delay is. But DQ transform based controller has cross-coupling component which difficult to analyze the system in single phase model. In this paper, to obtained single phase model of the system, DQ transform based controller is analyzed in two techniques. The first is by neglecting cross-coupling. The second is eliminated cross-coupling component by decoupling method. By these two techniques, single phase model is obtained. Then, the single phase model is analyzed to evaluate its performance in stability and frequency response, through Root Locus and Bode diagram, respectively. MATLAB and PSIM simulation is used to verify the analysis. Simulation result is shown; cross-coupling component has no significant influent to the controller.

  • PDF

Design of Robust Double Digital Controller to Improve Performance for UPS Inverter (UPS 인버터의 성능 개선을 위한 강인한 2중 디지털 제어기의 설계)

  • 박지호;노태균;김춘삼;안인모;우정인
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.116-127
    • /
    • 2003
  • In this paper, a new fully digital control method for UPS inverter, which is based on the double control loop such as the outer voltage control loop and inner current control loop, is proposed. In the proposed control system, overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The inner current control loop is adopted by an Internal model controller The Internal model controller is designed to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. The outer voltage control loop employing P-Resonance controller is proposed. The resonance controller has an infinite gain at resonant frequency, and the resonant frequency is set to the fundamental frequency of the reference voltage in this paper. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been verified by the simulation and experimental results respectively.

Development of Digital Controller and Monitoring System for UPS Inverter (UPS 인버터의 디지털 제어기 및 모니터링 시스템의 개발)

  • Park, Jee-Ho;Hwang, Gi-Hyun;Kim, Dong-Wan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • In this paper, a new fully digital control method for UPS inverter, which is based on the double control loop such as the outer voltage control loop and inner current control loop, is proposed. In the proposed control system, overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The inner current control loop is adopted by an internal model controller. The internal model controller is designed to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. The outer voltage control loop employing P-Resonance controller is proposed. The resonance controller has an infinite gain at resonant frequency, and the resonant frequency is set to the fundamental frequency of the reference voltage in this paper. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been verified by the simulation and experimental results respectively.

Experimental study of neural linearizing control scheme using a radial basis function network

  • Kim, Suk-Joon;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.731-736
    • /
    • 1994
  • Experiment on a lab-scale pH process is carried out to evaluate the control performance of the neural linearizing control scheme(NLCS) using a radial basis function(RBF) network which was previously proposed by Kim and Park. NLCS was developed to overcome the difficulties of the conventional neural controllers which occur when they are applied to chemical processes. Since NLCS is applicable for the processes which are already controlled by a linear controller and of which the past operating data are enough, we first control the pH process with PI controller. Using the operating data with PI controller, the linear reference model is determined by optimization. Then, a IMC controller replaces the PI controller as a feedback controller. NLCS consists of the IMC controller and a RBF network. After the learning of the neural network is fully achieved, the dynamics of the process combined with the neural network becomes linear and close to that of the linear reference model and the control performance of the linear control improves. During the training, NLCS maintains the stability and the control performance of the closed loop system. Experimental results show that the NLCS performs better than PI controller and IMC for both the servo and the regulator problems.

  • PDF

The Design of Model Reference Adaptive Controller via Block Pulse Functions (블럭펄스 함수를 이용한 기준 모델 적응 제어기 설계)

  • Kim, Jin-Tae;Kim, Tai-Hoon;Lee, Myung-Kyu;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • This paper proposes a algebraic parameter determination of MRA(Model Reference Adaptive Control) controller using block Pulse functions and block Pulse function's differential operation. Generally, adaption is performed by solving differential equations which describe adaptive low for updating controller parameter. The proposes algorithm transforms differential equations into algebraic equation, which can be solved much more easily inn a recursive manner. We believe that proposes methods are very attractive and proper for parameter estimation of MRAC controller on account of its simplicity and computational convergence.

Speed Control of Induction Motor Drive using Adaptive FNN Controller (적응 FNN 제어기를 이용한 유도전동기 드라이브의 속도제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Lee, Young-Sil;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.143-146
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for speed control of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions.

  • PDF

Speed Control of Brushless DC Motor Using Direct Model Reference Adaptive Controller (직접 모델 기준 적응 제어기를 이용한 브러시리스 직류 전동기의 속도 제어)

  • Kwon, Chudng-Jin;Han, Woo-Yong;Sin, Dong-Yong;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1114-1116
    • /
    • 2000
  • A direct model reference adaptive control (DMRAC) is applied to the speed control of brushless do(BLDC) motor. The main objective is to achieve precise speed control in the face of varying motor parameters and load. The control is described as an outer loop speed control and an inner current loop control which has raster dynamics than the speed loop. The adaptive control is applied to the outer speed control loop. DMRAC is compared to an indirect adaptive controller(IMRAC) and a PI controller. Simulation results show that the two adaptive controllers give similar respose and are superior to the PI controller. However, the DMRAC algorithm is simpler to implement.

  • PDF

Variable Structure Model Reference Adaptive Control, for SIMO Systems

  • mohammadi, Ardeshir Karami
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1987-1992
    • /
    • 2004
  • A Variable Structure Model Reference Adaptive Controller (VS-MRAC) using state Variables is proposed for single input multi output systems. . The structure of the switching functions is designed based on stability requirements, and global exponential stability is proved. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time. The effect of input disturbances on stability and transients is investigated and shows preference to the conventional MRAC schemes with integral adaptation law. Sliding surfaces are independent of system parameters and therefore VS-MRAC is insensitive to system parameter variations. Simulation is presented to clear the theoretical results.

  • PDF

An adaptive control and robust control of satellite (위성체의 적응제어 및 강인제어 연구)

  • 노영환;진익민;김진철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1688-1691
    • /
    • 1997
  • In the time-invarient system, the adaptive controller was designed for the non-tracking error in the 1980's. In this study, the Model Reference Adaptive Control using on-line processing method is used to identify the coefficients of the model, and the Robust Controller (H.inf.) is designed to stabilize the rigid body and the flexible body of satellite, which can be perturbed due to disturbance, etc. The result obtained by H.inf. controller is compared with that of the PI(Proportional and Intergation) controller which is commonly used for stabilizing satellite.

  • PDF