• Title/Summary/Keyword: Model pump

Search Result 935, Processing Time 0.029 seconds

Experimental Implantation of Moving Actuator Type Total Artificial Heart in Sheep (양에서 시행한 이동작동기 형태(MOVING ACTUATOR TYPE) 인공심장의 삽입실험)

  • 김원곤
    • Journal of Chest Surgery
    • /
    • v.28 no.6
    • /
    • pp.533-541
    • /
    • 1995
  • We recently developed a new model of moving actuator type totally implantable artificial heart[TIAH , based on the reverse position of the aortic and pulmonary conduits. This concept was proposed by one of surgeons in our team[Joon-Ryang Rho, M.D. to facilitate anatomical fitting of TIAHs. The moving actuator type electromechanical TIAH consisted of the left and right blood sacs, and the moving actuator including a motor. The inverted umbrella type polyurethane valves were used in the blood pumps. The aortic conduit was positioned anterior to the pulmonary conduit, which was the opposite relation to the conventional configuration of other total artificial hearts. We also adapted slip-in connectors for the aortic and pulmonary conduits. Two sheep , weighing 60-69 kg, were used for implantation. After small cervical incision and trans-sternal bilateral thoracotomy, cardiopulmonary bypass [CPB was administered using an American Optical 5-head pump and a membrane oxygenator[Univox-IC, Bentley . The anterior and posterior vena cavae were drained separately for venous return. An arterial return cannula was inserted into the right common carotid artery. During CPB, almost all of the ventricular myocardium was excised down to the atrioventricular groove and the artificial heart was implanted. We achieved 3-day survival in the first sheep and 2-day survival in the second. The day after operation the first sheep was successfully extubated and the second sheep was weaned from a respirator with good condition. After extubation, the first sheep walked around in the cage and fed herself. Serial laboratory and hemodynamic examinations were done during the experiments. In both sheep, pulmonary dysfunction was gradually developed, which was accompanied by acute renal failure. The animals were sacrificed and autopsy was done. Unexpected pregnnacy was incidentally found in both sheep. To our knowledge this is the first report of significant survival cases in the orthotopic implantation of electric TIAH using sheep.

  • PDF

Flow Analysis of Facade Integrated Solar Water Heater with Natural Circulation (파사드 일체형 자연순환 태양열온수기 유동해석)

  • Baek, Nam-Choon;Lee, Wang-Je;Lim, Hee-Won;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.167-172
    • /
    • 2016
  • Purpose: The solar water heater with natural circulation has been used for several decades in the world as it is automatically operated without a pump and controller and is easy to maintain and repair. After the subsidy was offered from 2012, the solar water heater with natural circulation is becoming increasingly popular in Korea. Recently, the development of a wall-integrated solar water heater, which improves the applicability of buildings and prevents the overheating in the summer, is being developed. On the other hand, the design and performance evaluation data of solar water heaters are very inadequate, and analysis of heat and flow is required to develop a new type of solar water heater. Method: Therefore, in this study, we proposed a new simplified system analysis model that reflects heat and pressure loss from the test results of KS B ISO 9806-1 (Solar collector test method), assuming that the collector is a simple pipe system, the validity of which was verified through experiments. Result: As a result, first, the RMSE of the system circulation flow rate and the average temperature of the inlet and outlet of the collector according to the experimental results and the simulation are 0.05563 and 0.88530, respectively, which are very consistent. Secondly, the mass flow rate is increased linearly with the increase of the solar radiation, and the mass flow rate is 0.0104 ~ 0.0180kg/s in the range of $200{\sim}380W/m^2$ of solar irradiance. Compared with the test flow rate 0.0764kg / s of the test collector, it showed a level of less than 20%.

A Study on the Infrastructure of All-electric Houses in the Viewpoint of Hydrogen Economy (수소경제 관점의 전기에너지주택 보급기반 구축에 관한 연구)

  • Hwang, Sung-Wook;Lee, Hyeon-Ju;Kim, Kang-Sik;Nah, Hwan-Seon;Kim, Jung-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.100-109
    • /
    • 2012
  • In this paper, some ideas are proposed to establish the infrastructure of all-electric houses which are able to reduce primary energy consumption and $CO_2$ emission by adopting heat pump systems and induction heating cookers excluding the use of fossil fuel energy. This electrification concept is based on the consumption of only one type of energy which means electricity as secondary energy and the conventional fossil fuel energy is just consumed to generate electricity as primary energy. All-electric house is laid on the extension of the hydrogen economy in a long-term viewpoint so that the effectiveness of this new conceptual house is estimated analyzing the reduction of $CO_2$ emission. In this analysis, the balance of electricity supply and demand is considered including the construction of new power plants by renewable energy such as nuclear, IGCC and fuel cell because decarbonization is an essential element of hydrogen technology and economy and this action is accomplished in both supply and demand side of electricity. The results are able to contribute to develop various useful hydrogen policies and strategies and some detail researches are required previously to make the best application of this new conceptual house.

A Comparative Study of Sepiae Os, Arcae Concha, Ostreae Concha and Esomeprazole in a Mouse Model of Reflux Esophagitis (역류성 식도염 생쥐 모델에서 해표초, 와릉자, 모려와 Esomeprazole의 치료효과에 대한 비교 연구)

  • Song, Chang-Hun;Baek, Tae-Hyun
    • The Journal of Korean Medicine
    • /
    • v.39 no.2
    • /
    • pp.92-105
    • /
    • 2018
  • Objectives: This aim of this study is to compare the reflux esophagitis improvement effects of Sepiae Os, Arcae Concha, Ostreae Concha, and Proton Pump Inhibitor(esomeprazole) through rat experiments. Methods: NO production inhibitory effect was measured by NO production amount and iNOS mRNA expression level in cell lines. iNOS, $TNF-{\alpha}$ and $p-I{\kappa}B$, and serotonin were compared using immunohistochemistry at the rat reflux esophagitis. Reflux esophagitis connection external form, lower esophageal sphincter, and gap were observed and an esophageal inflammatory indicator, IL-6 activity was also evaluated by immunohistochemistry. Results: NO production and iNOS mRNA expression was showed concentration dependent decrease in cell lines treated with Sepiae OS, Arcae Concha, and Ostreae Concha at the experiments of cell lines. In the suppression of iNOS and $p-I{\kappa}B$ at the rat reflux esophagitis, Sepiae Os treat group(SOT) and Ostreae Concha treat group(OCT) were more effective. In the increase of serotonin at the rat reflux esophagitis, ACT, MT and OCT were more effective. Damage of lower esophageal sphincter, and gap between esophageal keratin and mucosa were observed less at the SOT, ACT, OCT. In the suppression of IL-6 at the rat reflux esophagitis, SOT and OCT were more effective than GE and, SOT was more effective than MT significantly. Conclusions: The anti-inflammatory effect was the best in the SOT and lower esophageal sphincter muscle contraction was the best in the ACT at the rat reflux esophagitis. Sepiae OS was more effective than esomeprazole in the suppression of iNOS, $TNF-{\alpha}$, and IL-6.

Sizing of Vertical Borehole Heat Exchangers using TRNOPT (TRNOPT를 이용한 수직 지중열교환기 길이 산정 방법에 관한 연구)

  • Park, Seung-Hoon;Lee, Hyun-Soo;Jang, Young-Sung;Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.402-407
    • /
    • 2016
  • Ground-coupled heat pump systems have been widely used, as they are regarded as a renewable energy source and ensure a high annual efficiency. Among the system components, borehole heat exchangers (BHE) play an important role in decreasing the entering water temperature (EWT) to heat pumps in the cooling season, and consequently improve the COP. The optimal sizing of the BHEs is crucial for a successful project. Other than the existing sizing methods, a simulation-based design tool is more applicable for modern complex geothermal systems, and it may also be useful since design and engineering works operate on the same platform. A simulation-based sizing method is proposed in this study using the well-known Duct STorage (DST) model in Trnsys. TRNOPT, the Trnsys optimization tool, is used to search for an optimal value of the length of BHEs under given ground loads and ground properties. The result shows that a maximum EWT of BHEs during a design period (10 years) successfully approaches the design EWT while providing an optimal BHE length. Compared to the existing design tool, very similar lengths are calculated by both methods with a small error of 1.07%.

An Experimental Study on the Cause of Signal Inhomogeneity for Magnetic Resonance Angiography Using Phantom Model of Anterior Communicating(A-com) Artery (전교통동맥 모형을 이용한 자기공명혈관촬영술의 신호 불균일에 관한 실험적 연구)

  • Yoo, Beong-Gyu;Chung, Tae-Sub
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • Aneurysm-mimicking findings were frequently visualized due to hemodynamical causes of dephasing effects around area of A-com artery during magnetic resonance angiography(MRA) and these kind of phenomena have not been clearly known yet. We investigated the hemodynamical patterns of dephasing effect around area of the A-com artery that might be a cause of false intracranial aneurysms on MRA. For experimental study, We used hand-made silicon phantoms of the asymmetric A-com artery as like a bifurcation configuration. In a closed circulatory system with UHDC computer driven cardiac pump system. MRA and fast digital subfraction angiography(DSA) involved the use of these phantoms. Flow patterns were evaluated with axial and coronal imaging of MRA(2D-TOF, 3D-TOF) and DSA of Phantoms constructed from an automated closed-type circulatory system filled with glycerol solution [circulation fluid(glycerol:water = 1:1.4)]. These findings were then compared with those obtained from computational fluid dynamic(CFD) for inter-experimental correlation study. Imaging findings of MRA, DSA and CFD on inflow zone according to the following: a) MRA demonstrated high signal intensity zone as inflow zone on silicon phantom; b) Patterns of DSA were well matched with MRA on trajectory of inflow zone; and c) CFD were well matched with MRA on the pattern of main flow. Imaging findings of MRA. DSA and CFD on turbulent flow zone according to the following: a) MRA demonstrated hyposignal intensity zone at shoulder and axillar zone of main inflow; b) DSA delineated prominent vortex flow at the same area. The hemodynamical causes of signal defect, which could Induce the false aneurysm on MRA, turned out to be dephasing effects at axilla area of bifurcation from turbulent flow as the results of MRA, DSA and CFD.

  • PDF

Subxiphoid Incisional Hernia Development after Coronary Artery Bypass Grafting

  • Kim, Hye-Seon;Kim, Ki-Bong;Hwang, Ho-Young;Chang, Hyung-Woo;Park, Kyu-Joo
    • Journal of Chest Surgery
    • /
    • v.45 no.3
    • /
    • pp.161-165
    • /
    • 2012
  • Background: Median sternotomy can weaken the upper abdominal wall and result in subxiphoid incisional hernia. We evaluated risk factors associated with the development of subxiphoid incisional hernias after coronary artery bypass grafting (CABG). Materials and Methods: Of 1,656 isolated CABGs performed between January 2001 and July 2010, 1,599 patients who were completely followed up were analyzed. The mean follow-up duration was $49.5{\pm}34.3$ months. Subxiphoid incisional hernia requiring surgical repair developed in 13 patients (0.8%). The hernia was diagnosed $16.3{\pm}10.3$ months postoperatively, and hernia repair was performed $25.0{\pm}26.1$ months after the initial operation. Risk factors associated with the development of subxiphoid incisional hernia were analyzed with the Cox proportional hazard model. Results: Five-year freedom from the hernia was 99.0%. Univariate analysis revealed that female sex (p=0.019), height (p=0.019), body surface area (p=0.046), redo operation (p=0.012), off-pump CABG (p=0.049), a postoperative wound problem (p=0.041), postoperative bleeding (p=0.046), and low cardiac output syndrome (p<0.001) were risk factors for the development of the hernia. Multivariable analysis showed that female sex (p=0.01) and low cardiac output syndrome (p<0.001) were associated with subxiphoid hernia formation. Conclusion: Female sex and postoperative low cardiac output syndrome were risk factors of subxiphoid hernia. Therefore, special attention is needed for patients with high-risk factors.

Cavitation Visualization Test for Shape Optimization of Bottom Plug in Reversing Valve (공동현상 가시화 실험을 통한 절환밸브 바텀플러그 형상 최적화)

  • Kim, Tae An;Lee, Myeong Gon;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.913-918
    • /
    • 2016
  • A three-way reversing valve, which provides rapid and accurate changes in the water flow direction without requiring any precise control device, is used in automotive washing machines to remove oil and dirt that remain on the machined engine and transmission blocks. Because of the complicated shape of the bottom-plug, however, cavitation occurs in the plug. In this study, the cavitation index and POC (percent of cavitation) were used to quantitatively evaluate the cavitation effect occurring in the bottom-plug on the downstream side. An optimal shape design was conducted via parametric study with a simple CAE model to avoid time-consuming CFD analysis and hard-to-achieve convergence. To verify the results of the numerical analysis, a flow visualization test was conducted using a specimen prepared according to ISA-RP75.23. In this test, the flow characteristics, such as cavitation occurring on the downstream side, were investigated using flow test equipment that included a valve, pump, flow control system, and high-speed camera.

Hydraulic Eroperty of Groundwater Flow Controlled by Vertical Geologic Structure and its field Example (수직 지질구조에 의해서 지배되는 암반지하수 유동의 수리적 성질과 그 예)

  • 함세영;김형찬;임정웅
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.101-109
    • /
    • 1998
  • Hydraulic property of fissured aquifers often depends on geologic structure which acts main channel of groundwater flow. We treated theories of linear flow related to vertical geologic structure. Then, we analyzed the result of two pumping tests conducted in Okmyeong-ri area (Kyeongbook province) using fractal model and found hydraulic characteristic of the fissured aquifer in this area. According to the pump test analyses, groundwater flow around the holes (pumping well D9; observation wells C3 and D7) of test 1 is linear. and is controlled by vertical geologic structure with infinite length and infinitesimally small width. On the other hand, around the hole D10 (pumping well) of test 2, groundwater flow is pseudo-radial (n=1.9) or radial (n=2). Thus, the characteristic of fractured aquifer often shows variable groundwater flow spatially and temporally.

  • PDF

Effect of the Presence of Sub-pipes on the Performance of Water Nozzle (서브파이프의 유무에 따른 워터노즐의 성능특성연구)

  • Yi, Young-Woo;Lim, Hee-Chang
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.17-24
    • /
    • 2018
  • This paper presents a numerical analysis of flow inside a water nozzle for fire fighting and observes the effect of the variation in primary components on internal flow. In order to observe the performance of water nozzles, they have been systematically designed and modelled, applying boundary conditions obtained from field experiments (inlet pressure at pump : 4 bar, and pressure outlet : atmospheric pressure). In addition, the governing equations were calculated to obtain velocity, pressure inside the nozzle. Two main parameters (the presence and length of sub-pipes) were considered with the aim to observe the detail internal flow characteristics. It is found that the base model is not significant on flow characteristics, but a negative effect (i. e. the reverse flow) at the entrance region of sub-pipe. On the other hand, the reverse flow was vanished when making the length of sub-pipe double.