• Title/Summary/Keyword: Model pump

Search Result 935, Processing Time 0.024 seconds

Heat Transfer Analysis of Bearing Unit in Submersible Motor Pump (수중 모터펌프 베어링 유닛 열전달 해석)

  • Yun, Jeong-Eui;Byun, Hyung-Kyun
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.198-203
    • /
    • 2011
  • The purpose of this paper is to find a proper cooling system of bearing unit in the submersible motor pump to extend a life time. To do this, heat transfer analysis of the submersible motor pump were performed using commercial CFD code ANSYS. In order to obtain the resonable heat transfer simulation results, we first set up mathematical model of heat source in the bearing system, and carried out heat transfer analysis with the model. As a results, new type bearing cap which had several ribs for cooling the bearing was proposed. Finally, through the comparison between experimental results of old and new model pump, we proofed that maximum bearing temperature of new model was about 10% lower than that of old model.

A Study of Impeller-Casing Interactions in a Centrifugal Pump (원심펌프 임펠러와 케이싱 사이의 상호 작용에 대한 연구)

  • Chung Kyung-Nam;Park Pyun-Gu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.585-588
    • /
    • 2002
  • Pump casing has blockage effects on Impeller flow in a centrifugal pump such that the flow field around volute tongue has quite large change when the impeller rotates. A double suction pump is widely used in industrial world because it has lower NPSH required than a single suction pump. Thus, in this study, the interaction between impeller and volute casing has been investigated by using CFD for a double-suction centrifugal pump. Quasi-steady method and full pump model has been employed for the numerical calculation.

  • PDF

Thermal Characteristics and Simulation Model Development for Greenhouse Heating System with Heat Pump (열펌프에 의한 그린하우스 난방시스템의 열특성과 시뮬레이션 모델개발)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.155-162
    • /
    • 2001
  • The greenhouse heating system with heat pump was built for development of simulation model and validation. The computer simulation model for the system to predict temperature of air and soil and moisture content of soil in the greenhouse were developed, and its validity was justified by actual data. From the analysis of experimentally measured data and the simulation output, following results were obtained. 1. The expected values of inside air temperature for the heating system with heat pump were very much close to the experimental values. 2. In the heating system with heat pump, the expected values of day time surface temperature of soil by computer simulation were very much similar to the measured values, but those of night time were higher than the measured value by at most 2.0$\^{C}$. 3. The simulation model predicted temperature of greenhouse film as of 1$\^{C}$ below than the mean value of ambient air and greenhouse air temperature. 4. Heat loss value of daytime was found to be larger than that of nigh as much as 1.3 to 2.3 times for the heating system with heat pump. 5. In the heating system with heat pump, when the lowest ambient temperature was -8$\^{C}$∼-7$\^{C}$ the air temperature of greenhouse was 5$\^{C}$∼6$\^{C}$, thus the heat pump heating system contributed in greenhouse heating by 13$\^{C}$.

  • PDF

A Study on the Performance of a Centrifugal Pump with Two-Phase Flow (기-액 2상유동에 따른 원심펌프 성능변화에 대한 연구)

  • Lee, Jong C.;Kim, Youn J.;Kim, C.-S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.12-18
    • /
    • 2000
  • In this study, experimental and numerical analyses are carried out to investigate the performance of centrifugal pump with various air admitting conditions. Experiments on the pump performance under air-water two-phase flow are accomplished using a centrifugal pump with semi-open type impeller having three, five and seven blades, respectively. Also, the numerical analysis of turbulent air-water two-phase flow using the finite volume method has been carried out to obtain the pressure, velocities and void fraction on the basis of a so-called bubbly flow model with the constant size and shape of cavity. The results obtained through this study show the reasonable agreements within the range of bubbly flow regime. There are promising developments concerning application of the present study for the flow in a centrifugal pump with two-phase flow conditions and efforts must be followed to improve the turbulence model and two-phase flow model for turbomachinery.

  • PDF

A Study on Hydraulic Control Characteristics of a Swashplate Type Axial Piston Pump-Regulator System by Linearization Analysis (사판식 액셜피스톤 펌프-레귤레이터계의 선형화해석에 의한 유압제어특성 고찰)

  • Jo, Seung-Ho;Kim, Won-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2535-2542
    • /
    • 2000
  • The regulator system has been modeled and combined to a swashplate type axial piston pump. Linear approximation has been performed for nonlinear coefficient terms of an axial piston pump-regulator model without significantly affecting accuracy. Based on the mathematical model of an axial piston pump-regulator system, a couple of characteristic curves of negative flow control and horsepower control are drawn, which show a good correlation with those of experimental results. So the simplified axial piston pump-regulator model in this paper is expected to be utilized not only for the design and analysis of hydraulic circuit of excavator but also for prevention of engine overload.

Modeling of Left Ventricular Assist Device and Suction Detection Using Fuzzy Subtractive Clustering Method (퍼지 subtractive 클러스터링 기법을 이용한 좌심실보조장치 모델링 및 흡입현상 검출)

  • Park, Seung-Kyu;Choi, Seong-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.500-506
    • /
    • 2012
  • A method to model left ventricular assist device (LVAD) and detect suction occurrence for safe LVAD operation is presented. An axial flow blood pump as a LVAD has been used to assist patient with heart problems. While an axial flow blood pump, a kind of a non-pulsatile pump, has relative advantages of small size and efficiency compared to pulsatile devices, it has a difficulty in determining a safe pump operating condition. It can show different pump operating statuses such as a normal status and a suction status whether suction occurs in left ventricle or not. A fuzzy subtractive clustering method is used to determine a model of the axial flow blood pump with this pump operating characteristic and the developed pump model can provide blood flow estimates before and after suction occurrence in left ventricle. Also, a fuzzy subtractive clustering method is utilized to develop a suction detection model which can identify whether suction occurs in left ventricle or not.

CONTROL STRATEGY OF ELECTRIC COOLANT PUMPS FOR FUEL ECONOMY IMPROVEMENT

  • CHO H.;JUNG D.;ASSANIS D. N.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.269-275
    • /
    • 2005
  • The engine cooling system for a medium duty V6, 4.5 L diesel engine was modeled with a commercial code, GT-Cool in order to investigate the effect of controllable electric pump on the cooling performance and the fuel economy. The simulation results of the cooling system model with mechanical coolant pump were validated with experimental data. Two different types of electric pumps were implemented into the cooling system model and PID control for electric pump operation was incorporated into the simulation study. Based on the simulation result with electric pump, conventional thermostat hysteresis was modified to reduce pump operation for additional improvement of fuel economy, and then the benefit of electric pumps with modified thermostat hysteresis on fuel economy was demonstrated with the simulation. The predicted result indicates that the cooling system with electric pump and modified thermostat hysteresis can reduce pump power consumption by more than $99\%$ during the FTP 74 driving cycle.

The Characteristics of a Pump at Nearly Saturated State

  • Kim, S. N.;Kim, J. C.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.40-46
    • /
    • 1998
  • A set of experiments using a 1/10 scale model pump which was manufactured to simulate performance of reactor coolant pump(RCP) of Y.G.N # 3 and 4, was executed in single phase(at atmospheric pressure and room temperature) and near-saturation(300 ~ 600kPa). The pump characteristics in single phase flow was similar to the characteristics of the RCP. The pump characteristic curves at nearly saturated state were correlated in terms of flow coefficient and head coefficient for subcooled temperature using the cavitation number defined as (equation omitted), which can be predicted the cavitation possibility. The pump behavior around the saturated temperature almost consists with single phase behavior until the cavitation occurs(When cavitation occurs. When the flow coefficient is about 0.12), the pump head rapidly degrades. In this situation, subcooled temperature is about 1.8~8$^{\circ}C$ and cavitation number of model pump is 1.0 ~ 1.7.

  • PDF

A piezoelectric pump using extensional vibration of lateral surface by traveling wave (진행파 여진에 의한 굴곡 신축진동을 이용하는 압전 펌프)

  • Oh, Jin-Heon;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.322-322
    • /
    • 2010
  • In this paper, we propose a novel type valveless micro-pump that uses extensional vibration mode of traveling wave as a volume transporting means for solving some problems about check valves, essential parts of usual pumps. The proposed pump consists of two piezoelectric ceramic rings and a metal body located in the middle of them respectively. Because the drift of bended surface that results from the traveling wave excitation controls the fluid flow, check valves are not needed in this pump model. In accordance with the variation of the pump body dimension, we analyzed the vibration displacement characteristics of pump model, determined the optimal design condition, fabricated the prototype pump from the analysis results and evaluated its efficiency.

  • PDF