• 제목/요약/키워드: Model pile load test

검색결과 184건 처리시간 0.022초

Model tests on bearing capacity and accumulated settlement of a single pile in simulated soft rock under axial cyclic loading

  • Zhang, Benjiao;Mei, Can;Huang, Bin;Fu, Xudong;Luo, Gang;Lv, Bu
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.611-626
    • /
    • 2017
  • The research reported herein is concerned with the model testing of piles socketed in soft rock which was simulated by cement, plaster, sand, water and concrete hardening accelerator. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted and the bearing capacity and accumulated deformation characteristics under different static, and cyclic loads were studied by using a device which combined oneself-designed test apparatus with a dynamic triaxial system. The accumulated deformation of the pile head, and the axial force, were measured by LVDT and strain gauges, respectively. Test results show that the static load ratio (SLR), cyclic load ratio (CLR), and the number of cycles affect the accumulated deformation, cyclic secant modulus of pile head, and ultimate bearing capacity. The accumulated deformation increases with increasing numbers of cycles, however, its rate of growth decreases and is asymptotic to zero. The cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles, and finally remains stable after 50 cycles. The ultimate bearing capacity of the pile is increased by about 30% because of the cyclic loading thereon, and the axial force is changed due to the applied cyclic shear stress. According to the test results, the development of accumulated settlement is analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to cyclic loading.

An analytical analysis of a single axially-loaded pile using a nonlinear softening model

  • Wu, Yue-dong;Liu, Jian;Chen, Rui
    • Geomechanics and Engineering
    • /
    • 제8권6호
    • /
    • pp.769-781
    • /
    • 2015
  • The skin friction of a pile foundation is important and essential for its design and analysis. More attention has been given to the softening behaviour of skin friction of a pile. In this study, to investigate the load-transfer mechanism in such a case, an analytical solution using a nonlinear softening model was derived. Subsequently, a load test on the pile was performed to verify the newly developed analytical solution. The comparison between the analytical solution and test results showed a good agreement in terms of the axial force of the pile and the stress-strain relationship of the pile-soil interface. The softening behaviour of the skin friction can be simulated well when the pile is subjected to large loads; however, such behaviour is generally ignored by most existing analytical solutions. Finally, the effects of the initial shear modulus and the ratio of the residual skin friction to peak skin friction on the load-settlement curve of a pile were investigated by a parametric analysis.

경계면 물성치에 따른 말뚝 거동 분석 - 근거리 사진계측을 이용한 모형시험과 수치해석 비교 (Investigation of Pile Behaviour according to Interface Properties - Comparison between Pile Model Test Using Close Range Photogrammetry and Numerical Analysis)

  • 이정민;이용주
    • 한국지반공학회논문집
    • /
    • 제30권9호
    • /
    • pp.29-39
    • /
    • 2014
  • 본 연구는 지반과 말뚝 사이의 경계면 물성치에 따른 말뚝의 거동을 파악하기 위하여, 말뚝 모형시험 결과와 유한요소해석 결과를 이용하여 비교 분석하였다. 모형시험은 말뚝이 침하함에 따른 주변 지반의 거동을 파악하기 위하여 근거리 사진계측 기법을 적용하였으며, 강재와 콘크리트로 제작 된 각각의 말뚝으로 시험을 수행하였다. 수치해석은 모형시험을 근거로 모델링 하였으며, 지반과 말뚝 사이의 미끄러짐을 모사하기 위하여 경계면 요소를 이용하였다. 또한 경계면 강도감소계수 $R_{inter}$를 이용하여 경계면 요소의 물성치를 나타내었으며, 이 값을 바꿔가며 모형시험 결과와 비교하였다. 본 연구를 통해 근거리 사진계측 기법과 수치해석 결과가 어느 정도 잘 일치하는 것을 확인 할 수 있었다. 또한, 말뚝의 재료에 따른 경계면 강도감소계수 $R_{inter}$ 값이 말뚝 거동에 영향을 주는 것을 확인하였다.

잔류하중을 고려한 장대 PHC 말뚝의 양방향 재하시험 결과해석 (Analysis of a Bi-directional Load Test Result on tong PHC Piles in Consideration of Residual Load)

  • 김성렬;정성교;이봉열
    • 한국지반공학회논문집
    • /
    • 제24권6호
    • /
    • pp.85-93
    • /
    • 2008
  • 대심도 연약지반에 설치되는 말뚝은 말뚝의 길이가 길어져 지반지지력이 크므로 극한 지지력의 확인이 힘들고, 부마찰력에 의해 큰 잔류하중이 발생하기 때문에 하중전이시험을 수행하더라도 정확한 하중전이곡선을 산정하기 어렵다. 본 연구에서는 연약지반에 설치된 PHC 항타 말뚝을 대상으로 선단지지력과 주면마찰력을 분리측정할 수 있고 극한 지지력을 확인하기 용이한 하중전이 양방향 재하시험을 수행하였다. 말뚝설치 직후부터 말뚝변형률을 지속적으로 계측하여 잔류하중을 결정하였다. 잔류하중의 영향을 고려하여 참지지력과 참 하중-변위 곡선을 분석하였다. 이를 바탕으로 잔류하중이 포함된 주면마찰력에 대한 하중-변위 거동모형을 제안하였다. 결과적으로, 점토지반에 설치되는 장대말뚝의 재하실험 결과에 대한 정확한 분석을 위해서는 잔류하중을 고려하여야 한다는 것을 입증하였다.

해상관측시설을 위한 파랑하중과 계류계 해석 -모래중에 뭍힌 원형파일의 수평력 추정방법을 중심으로- (Analysis of Wave Load and Mooring System for Ocean Monitoring Facilities - About an estimation method for horizontal force of circular pile in sand -)

  • 윤길수;김용직;김동준;강신영
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제1권1호
    • /
    • pp.102-111
    • /
    • 1998
  • 해양관측시설은 고정식과 부유식으로 나뉘는데 본 고에서는 부유식 해상관측시설과 관련된 파랑하중 및 계류계에 대해 다루었다. 부유식 해상관측시설의 일 예에 대해 운동계산과 표류력 계산을 수행하고 고찰하였다. 또한 계류앵커의 일종인 원형 파일앵커가 수평력을 받는 경우의 모형실험과 파주력 계산을 위한 프로그램을 작성하여 그 계산결과와 비교 고찰하였다. SCUBA 활동으로 설치가능한 파일앵커의 파주력 추정에 기여할 것으로 기대된다.

  • PDF

대형 UTM을 이용한 강관합성 말뚝재료의 강도 특성 평가 (Evaluation on compressive strength of steel-concrete composite piles using a large scaled UTM(Universal Test Machine))

  • 이주형;권형민;박재현;곽기석;정문경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.482-489
    • /
    • 2009
  • Various model piles with different sections such as reinforced concrete, steel, steel-concrete composite without rebar and steel-concrete composite with rebar were made, and vertical load test was conducted using a large scaled UTM(Universal Test Machine) to evaluate Young's modulus and ultimate load of the model piles. Based on the tests, ultimate load of steel-concrete composite pile is 31% greater than the sum of it of reinforced concrete pile and it of steel pile. This is caused that ultimate load and Young's modulus of inner concrete increase due to confining effect by outer steel casing. Variation of ultimate load is also insignificant depending on the ratio of length to diameter(L/D), therefore bucking has not an effect on change of ultimate load in case of the L/D below 10.

  • PDF

Shaft resistance of bored cast-in-place concrete piles in oil sand - Case study

  • Barr, L.;Wong, R.C.K.
    • Geomechanics and Engineering
    • /
    • 제5권2호
    • /
    • pp.119-142
    • /
    • 2013
  • Pile load tests using Osterberg cells (O-cell) were conducted on cast-in-place concrete piles founded in oil sand fill and in situ oil sand at an industrial plant site in Fort McMurray, Alberta, Canada. Interpreted pile test results show that very high pile shaft resistance (with the Bjerrum-Burland or Beta coefficient of 2.5-4.5) against oil sand could be mobilized at small relative displacements of 2-3% of shaft diameter. Finite element simulations based on linear elastic and elasto-plastic models for oil sand materials were used to analyze the pile load test measurements. Two constitutive models yield comparable top-down load versus pile head displacement curves, but very different behaviour in mobilization of pile shaft and end bearing resistances. The elasto-plastic model produces more consistent matching in both pile shaft and end bearing resistances whereas the linear elastic under- and over-predicts the shaft and end bearing resistances, respectively. The mobilization of high shaft resistance in oil sand under pile load is attributed to the very dense and interlocked structure of oil sand which results in high matrix stiffness, high friction angle, and high shear dilation.

Experimental study on the horizontal bearing characteristics of long-short-pile composite foundation

  • Chen-yu Lv;Yuan-cheng Guo;Yong-hui Li;An-di Hu-yan;Wen-min Yao
    • Geomechanics and Engineering
    • /
    • 제33권4호
    • /
    • pp.341-352
    • /
    • 2023
  • Long-short pile composite foundations bear both vertical and horizontal loads in many engineering applications. This study used indoor model tests to determine the horizontal bearing mechanism of a composite foundation with long and short piles under horizontal loads. A custom experimental device was developed to prevent excessive eccentricity of the vertical loading device caused by the horizontal displacement. ABAQUS software was used to analyze the influence of the load size and cushion thickness on the horizontal bearing mechanism. The results reveal that a large vertical load leads to soil densification and increases the horizontal bearing capacity of the composite foundation. The magnitude of the horizontal displacement of the pile and the horizontal load borne by the pile are related to the piles' positions. Due to different pile lengths, the long piles exhibit long pile effects and experience bending deformation, whereas the short piles rotate around a point (0.2 L from the pile bottom) as the horizontal load increases. Selecting a larger cushion thickness significantly improves the horizontal load sharing capacity of the soil and reduces the horizontal displacement of the pile top.

말뚝캡이 선단지지 무리말뚝의 지지거동에 미치는 영향 (Influence of Pile Cap On The Behaviors of End Bearing Pile Groups)

  • 최영석;이수형;정충기;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.245-252
    • /
    • 2000
  • Model tests on free standing pile groups and piled footings with varying a pile spacing in two layered soils are carried out. The influence of pile cap on the behaviors of end bearing pile groups is analyzed by comparing the bearing behavior in piled footings with those in a single pile, a shallow footing(cap alone) and free standing pile groups. From the test results, it is found that the bearing characteristics of cap-soil-pile system are related with load levels and pile spacings. Before yield, the bearing resistance by cap is not fully mobilized, however, as the applied load increases, the bearing resistance of cap approaches to that of cap alone and settlement hardening occurs after yield due to the compaction caused by the contact pressure between cap and soil. By the cap-soil-pile interaction, shaft friction and point resistance of piles considerably increase with dependency of pile spacings. In two layered soil, the increasing effect of dilatancy in dense sandy soil adjacent to pile tips, increases the point resistance of pile.

  • PDF

Reliability analysis of piles based on proof vertical static load test

  • Dong, Xiaole;Tan, Xiaohui;Lin, Xin;Zhang, Xuejuan;Hou, Xiaoliang;Wu, Daoxiang
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.487-496
    • /
    • 2022
  • Most of the pile's vertical static load tests in construction sites are the proof load tests, which is difficult to accurately estimate the ultimate bearing capacity and analyze the reliability of piles. Therefore, a reliability analysis method based on the proof load-settlement (Q-s) data is proposed in this study. In this proposed method, a simple ultimate limit state function based on the hyperbolic model is established, where the random variables of reliability analysis include the model factor of the ultimate bearing capacity and the fitting parameters of the hyperbolic model. The model factor M = RuR / RuP is calculated based on the available destructive Q-s data, where the real value of the ultimate bearing capacity (RuR) is obtained by the complete destructive Q-s data; the predicted value of the ultimate bearing capacity (RuP) is obtained by the proof Q-s data, a part of the available destructive Q-s data, that before the predetermined load determined by the pile test report. The results demonstrate that the proposed method can easy and effectively perform the reliability analysis based on the proof Q-s data.