• Title/Summary/Keyword: Model parameter tuning

Search Result 163, Processing Time 0.027 seconds

Database Management System Parameter Tuning Processes for Improving Database System Performance (데이터베이스 시스템 성능 향상을 위한 데이터베이스 관리 시스템 파라미터 튜닝 프로세스)

  • 최용락;윤병권;정기원
    • The Journal of Society for e-Business Studies
    • /
    • v.7 no.1
    • /
    • pp.107-127
    • /
    • 2002
  • Database system parameter tuning is one of database system tuning that achieve to improve performance of database system with application program tuning and data model tuning. By parameter tuning adjusts value of entry that is staled in data dictionary's parameter file that is included to database system, it is thing which make relevant database system can display performance of most suitable. And, it is that achievement is one o( possible tuning method immediately without occurrence of additional expense or involved hardware for database system performance elevation and ashes composition of software. But, it is actuality that administration about parameter practical use is not achieved, and is using Default Value of parameter that database management system offers just as it is systematically. So, this paper presents parameter tuning process that can :achieve Parameter tuning of database system that is operating present systematically, and parameter tuning process each activity important input urea and tuning achievement product. And explain about effect and result that happen by sort database system performance and parameters that it is affinity systematically, and grasp relationships between parameter, and change parameter of string database system. And not that parameter uses contents that specify by fixing when establish database administration system, is going to emphasize and explain that must utilize changing continuously during database system operation. It changes parameter entry value how in various kinds different operation environment and present if must apply, and will arrange effect that this parameter enoy value alteration gets in performance liking into account point that is actuality that is using parameter that define database administrators when install the database system just as it is continually without alteration.

  • PDF

A Study on an AVR Parameter Tuning Method using Real-lime Simulator (실시간 시뮬레이터를 이용한 AVR의 파라미터 튜닝에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.69-75
    • /
    • 2002
  • AVR parameter tuning for voltage control of power system generators has generally been performed with the analytic methods and the simulation methods, which mostly depend on off-line linear mathematical models of excitation control system. However, due to the nonlinear nature of excitation control system, excitation control system performance of the tuned Parameters using the above conventional tuning methods may not be appropriate for some operating conditions. This paper presents an AVR parameter tuning method using actual on-line data of the excitation control system with the parameter optimization technique. As this method utilizes on-line operating data of the target excitation control system not the mathematical model of the system, it can overcome the limitation of model uncertainty Problems in conventional method, and it can tune the AVR parameter set which gives desired performance at the operating conditions. For the verification of proposed tuning method, two case studies with scaled excitation systems and the real-time power system simulator are presented.

A New Optimal AVR Parameter Tuning Method Using On-Line Excitation Control System Model with SQP Method (온라인 여자제어시스템 모델과 SQP법을 이용한 AVR의 파라미터 튜닝 방법에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.118-126
    • /
    • 2002
  • AVR parameter tuning for voltage control of generators has generally been done with the off-line open-circuit model of the synchronous generator. When the generator is connected on-line and operating with load the AVR operates in an entirely different environment from the open-circuit conditions. This paper describes a new method for AVR parameter tuning for on line conditions using SQP(Sequential Quadratic Programming) meshed with frequency response characteristics of linearized on-line system model. As the proposed method uses the un - line system model the tuned parameter sets show more optimal behavior in the on-line operating conditions. furthermore, as this method considers the performance indices that are needed for stable operation as constraints, AVR parameter sets that are tuned by this method could guarantee the stable performance, too.

System Parameter Estimation and PID Controller Tuning Based on PPGAs (PPGA 기반의 시스템 파라미터 추정과 PID 제어기 동조)

  • Shin Myung-Ho;Kim Min-Jeong;Lee Yun-Hyung;So Myung-Ok;Jin Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.644-649
    • /
    • 2006
  • In this paper, a methodology for estimating the model parameters of a discrete-time system and tuning a digital PID controller based on the estimated model and a genetic algorithm is presented. To deal with optimization problems regarding parameter estimation and controller tuning, pseudo-parallel genetic algorithms(PPGAs) are used. The parameters of a discrete-time system are estimated using both the model adjustment technique and a PPGA. The digital PID controller is described by the pulse transfer function and then its three gains are tuned based on both the model reference technique and another PPGA. A set of experimental works on two processes are carried out to illustrate the performance of the proposed method.

Tuning of Dual-input PSS and Its Application to 612 MVA Thermal Plant: Part 1-Tuning Methology of IEEE Type PSS2A Model (다중입력 PSS 튜닝 방법과 612 MVA 화력기 적용: Part 1-IEEE PSS2A 튜닝 방법)

  • Kim, Dong-Joon;Moon, Young-Hwan;Kim, Sung-Min;Kim, Jin-Yi;Hwang, Bong-Hwan;Cho, Jong-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.655-664
    • /
    • 2009
  • This paper, Part 1, describes the effective dual-input PSS parameter design procedure for the IEEE Type PSS2A against the Dangjin 612 MVA thermal plant's EX2000 excitation system. The suggested tuning technique used the model-based PSS tuning method and consisted of three steps: 1) generation system modeling; 2) determination of PSS2A model parameters using linear, time-domain transient and 3-phase simultaneous analyses, and 3) field testing and verification, which are described in Part 2. The effective PSS2A model parameters of EX2000 system in the Dangjin T/P #4 were designed according to the suggested procedure, and verified by using three analyses.

A Study on Bias Effect on Model Selection Criteria in Graphical Lasso

  • Choi, Young-Geun;Jeong, Seyoung;Yu, Donghyeon
    • Quantitative Bio-Science
    • /
    • v.37 no.2
    • /
    • pp.133-141
    • /
    • 2018
  • Graphical lasso is one of the most popular methods to estimate a sparse precision matrix, which is an inverse of a covariance matrix. The objective function of graphical lasso imposes an ${\ell}_1$-penalty on the (vectorized) precision matrix, where a tuning parameter controls the strength of the penalization. The selection of the tuning parameter is practically and theoretically important since the performance of the estimation depends on an appropriate choice of tuning parameter. While information criteria (e.g. AIC, BIC, or extended BIC) have been widely used, they require an asymptotically unbiased estimator to select optimal tuning parameter. Thus, the biasedness of the ${\ell}_1$-regularized estimate in the graphical lasso may lead to a suboptimal tuning. In this paper, we propose a two-staged bias-correction procedure for the graphical lasso, where the first stage runs the usual graphical lasso and the second stage reruns the procedure with an additional constraint that zero estimates at the first stage remain zero. Our simulation and real data example show that the proposed bias correction improved on both edge recovery and estimation error compared to the single-staged graphical lasso.

AVR Parameter tuning with On-line System model using Parameter optimization technique (On-line 시스템 모델과 파라메터 최적화 기법을 이용한 AVR의 최적 파라메터 튜닝)

  • Kim, Jung-Mun;Moon, Seung-Ill
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1242-1244
    • /
    • 1999
  • AVR parameter tuning for voltage control of power system generators has generally been done with the open-circuit model of the synchronous generator. When the generator is connected on-line and operating at rated load conditions, the AVR operates in an entirely different environment from the open-circuit conditions. This paper describes a new method for AVR parameter tuning using optimization technique with on-line linearized system model. As this method considers not only the on-line models but also the off-line open-circuit models, AVR parameters tuned by this method can give the sufficiently stable performance at the open-circuit commissioning phase and give the desired performance at the operating conditions. Also this method estimates the optimum parameters for desired performance indices that are chosen for satisfying requirements in some practical applications, the performance of the AVR can satisfy the various requirements.

  • PDF

An Analysis on Effects of Phase Compensation on Power System Stability in the PSS Parameter Tuning (PSS Tuning시 위상보상이 계통안정도에 미치는 영향 분석)

  • Kim, Tae-Kyun;Shin, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1147-1149
    • /
    • 1998
  • This paper presents the result of an analysis on effects of phase compensation on power system stability in the PSS parameter tuning. Synchronizing and damping coefficients are induced from lineal model for generator with PSS. Synchronizing and damping coefficients corresponding to time constants of phase compensation control block are calculated on a single machine, infinite bus test system. The Parameter tuning concepts, basic function, structural elements and performance criteria of PSS are introduced.

  • PDF

Model-based Tuning Rules of the PID Controller Using Real-coded Genetic Algorithms (RCGA를 이용한 PID 제어기의 모델기반 동조규칙)

  • 김도응;진강규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1056-1060
    • /
    • 2002
  • Model-based tuning rules of the PID controller are proposed incorporating with real-coded genetic algorithms. The optimal parameter sets of the PID controller for step set-point tracking are obtained based on the first-order time delay model and a real-coded genetic algorithm as an optimization tool. As for assessing the performance of the controllers, performance indices(ISE, IAE and ITAE) are adopted. Then tuning rules are derived using the tuned parameter sets, potential rule models and another real-coded genetic algorithm A set of simulation works is carried out to verify the effectiveness of the proposed rules.

Hyper Parameter Tuning Method based on Sampling for Optimal LSTM Model

  • Kim, Hyemee;Jeong, Ryeji;Bae, Hyerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.137-143
    • /
    • 2019
  • As the performance of computers increases, the use of deep learning, which has faced technical limitations in the past, is becoming more diverse. In many fields, deep learning has contributed to the creation of added value and used on the bases of more data as the application become more divers. The process for obtaining a better performance model will require a longer time than before, and therefore it will be necessary to find an optimal model that shows the best performance more quickly. In the artificial neural network modeling a tuning process that changes various elements of the neural network model is used to improve the model performance. Except Gride Search and Manual Search, which are widely used as tuning methods, most methodologies have been developed focusing on heuristic algorithms. The heuristic algorithm can get the results in a short time, but the results are likely to be the local optimal solution. Obtaining a global optimal solution eliminates the possibility of a local optimal solution. Although the Brute Force Method is commonly used to find the global optimal solution, it is not applicable because of an infinite number of hyper parameter combinations. In this paper, we use a statistical technique to reduce the number of possible cases, so that we can find the global optimal solution.