• 제목/요약/키워드: Model key feature

검색결과 211건 처리시간 0.022초

뼈대-구조 능동형태모델을 이용한 사람의 자세 정합 (Human Pose Matching Using Skeleton-type Active Shape Models)

  • 장창혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권12호
    • /
    • pp.996-1008
    • /
    • 2009
  • 본 논문은 뼈대-구조(skeleton) 형태의 Active Shape Models을 이용한 사람의 자세 정합에 대한 새로운 접근 방법을 제안한다. 제안된 방법은 모델 생성과 정합 과정에서의 빠른 수행 시간을 위해 기존 윤곽 형태(silhouette)의 모델이 아닌 뼈대-구조 형태의 모델을 적용하였다. 기존 Active Shape Models을 뼈대-구조 형태로 사람 자세 정합에 적용했을 경우 자세를 결정짓는 팔과 다리의 부정확한 정합은 사람 몸의 다양한 색상 정보와 전후(fore-rear direction)만을 고려한 특징점(landmark)의 방향정보로 인해 발생되며, 이러한 문제점은 입력 영상의 차영상 정보와 사람의 자세를 결정짓는 팔과 다리의 중요 특징점에 방향정보를 추가하여 해결하였다. 사람의 뼈대-구조 모델을 생성하기 위해 600개의 이미지를 사용 하였으며, 생성된 형태 모델은 사람의 자세에 정합될 수 있는 17개의 특징점을 포함한다. 정합 과정에서 최대 30번 이하의 반복 과정을 수행 하며, 최대 수행 시간은 0.03초로 빠른 수행 시간의 결과를 얻었다.

Nonlinear Diffusion and Structure Tensor Based Segmentation of Valid Measurement Region from Interference Fringe Patterns on Gear Systems

  • Wang, Xian;Fang, Suping;Zhu, Xindong;Ji, Jing;Yang, Pengcheng;Komori, Masaharu;Kubo, Aizoh
    • Current Optics and Photonics
    • /
    • 제1권6호
    • /
    • pp.587-597
    • /
    • 2017
  • The extraction of the valid measurement region from the interference fringe pattern is a significant step when measuring gear tooth flank form deviation with grazing incidence interferometry, which will affect the measurement accuracy. In order to overcome the drawback of the conventionally used method in which the object image pattern must be captured, an improved segmentation approach is proposed in this paper. The interference fringe patterns feature, which is smoothed by the nonlinear diffusion, would be extracted by the structure tensor first. And then they are incorporated into the vector-valued Chan-Vese model to extract the valid measurement region. This method is verified in a variety of interference fringe patterns, and the segmentation results show its feasibility and accuracy.

Cascaded-Hop For DeepFake Videos Detection

  • Zhang, Dengyong;Wu, Pengjie;Li, Feng;Zhu, Wenjie;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1671-1686
    • /
    • 2022
  • Face manipulation tools represented by Deepfake have threatened the security of people's biological identity information. Particularly, manipulation tools with deep learning technology have brought great challenges to Deepfake detection. There are many solutions for Deepfake detection based on traditional machine learning and advanced deep learning. However, those solutions of detectors almost have problems of poor performance when evaluated on different quality datasets. In this paper, for the sake of making high-quality Deepfake datasets, we provide a preprocessing method based on the image pixel matrix feature to eliminate similar images and the residual channel attention network (RCAN) to resize the scale of images. Significantly, we also describe a Deepfake detector named Cascaded-Hop which is based on the PixelHop++ system and the successive subspace learning (SSL) model. By feeding the preprocessed datasets, Cascaded-Hop achieves a good classification result on different manipulation types and multiple quality datasets. According to the experiment on FaceForensics++ and Celeb-DF, the AUC (area under curve) results of our proposed methods are comparable to the state-of-the-art models.

유비쿼터스 환경에서 피쳐 기반 서비스 식별 방법 (A Feature-based Method to Identify Services in Ubiquitous Environment)

  • 신현석;송치양;강동수;백두권
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권7호
    • /
    • pp.37-49
    • /
    • 2008
  • 비즈니스 적으로 재사용 가능한 서비스와 언제 어디서나 컴퓨팅 서비스를 제공하는 유비쿼터스는 중요한 패러다임으로 이슈화되고 있다. 서비스의 필수 요소는 유연성과 독립성이고, 유비쿼터스 모델링의 핵심 요소는 상호운용과 상황인지이다. 서비스 식별 방법으로는 비즈니스 프로세스 기반의 하향식 방법과 컴포넌트 기반의 상향식 방법이 있다. 하향식 방법은 전문가의 직관에 의존하며, 상향식 방법은 컴포넌트의 제약으로 비기능 요소를 표현하지 못하는 단점이 있다. 반면, 피처는 비기능 표현이 가능하여 유비쿼터스 환경에서의 서비스 식별로 적합하나. 이를 기반으로 하는 서비스 식별 연구가 미흡하다. 본 논문에서는, 피쳐를 기반으로 유비쿼터스 환경에서의 서비스를 식별하는 방법을 제안한다. 피쳐 모델로부터 초기 후보 서비스를 도출, 정제, 분석하여 최종 서비스를 식별한다. 제안 방법을 통해, 피쳐 기반의 효과적인 유비쿼터스 도메인 분석과 재사용 단위의 다양화에 의한 재사용성 증가를 기대할 수 있다.

  • PDF

An Extended Generative Feature Learning Algorithm for Image Recognition

  • Wang, Bin;Li, Chuanjiang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.3984-4005
    • /
    • 2017
  • Image recognition has become an increasingly important topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The recognition systems rely on a key component, i.e. the low-level feature or the learned mid-level feature. The recognition performance can be potentially improved if the data distribution information is exploited using a more sophisticated way, which usually a function over hidden variable, model parameter and observed data. These methods are called generative score space. In this paper, we propose a discriminative extension for the existing generative score space methods, which exploits class label when deriving score functions for image recognition task. Specifically, we first extend the regular generative models to class conditional models over both observed variable and class label. Then, we derive the mid-level feature mapping from the extended models. At last, the derived feature mapping is embedded into a discriminative classifier for image recognition. The advantages of our proposed approach are two folds. First, the resulted methods take simple and intuitive forms which are weighted versions of existing methods, benefitting from the Bayesian inference of class label. Second, the probabilistic generative modeling allows us to exploit hidden information and is well adapt to data distribution. To validate the effectiveness of the proposed method, we cooperate our discriminative extension with three generative models for image recognition task. The experimental results validate the effectiveness of our proposed approach.

스팸성 자질과 URL 자질의 공동 학습을 이용한 최대 엔트로피 기반 스팸메일 필터 시스템 (A Spam Filter System Based on Maximum Entropy Model Using Co-training with Spamminess Features and URL Features)

  • 공미경;이경순
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.61-68
    • /
    • 2008
  • 본 논문에서는 스팸메일에 나타나는 스팸성 자질과 URL 자질의 공동 학습을 이용한 최대엔트로피모델 기반 스팸 필터 시스템을 제안한다. 스팸성 자질은 스패머들이 스팸메일에 인위적으로 넣는 강조 패턴이나 필터 시스템을 통과하기 위해 비정상적으로 변형시킨 단어들을 말한다. 스팸성 자질 외에 반복적으로 나타나는 URL과 비정상적인 URL도 자질로 사용하였다. 메일에 나타난 정상적인 URL과 필터 시스템을 피하기 위해 변형된 비정상적인 URL들이 스팸 메일을 걸러내는데 도움을 줄 수 있기 때문이다. 또한 스팸성 자질과 URL자질을 이용한 공동 학습을 하였다. 공동 학습은 학습 과정에서 두 자질을 독립적으로 이용한 비지도 학습 방법으로 정답을 모르는 문서를 이용할 수 있다는 장점을 갖는다. 실험을 통해 스팸성 자질과 URL을 이용함으로써 스팸 필터 시스템의 성능을 향상시킬 수 있음을 확인하였으며 두 자질 집합을 이용한 공동 학습이 필요한 학습 문서의 수를 감소시키면서, 정확도는 일괄 학습 정확도에 근접한다는 것을 확인하였다.

딥러닝 기반 이미지 특징 추출 모델을 이용한 유사 디자인 검출에 대한 연구 (Detecting Similar Designs Using Deep Learning-based Image Feature Extracting Model)

  • 이병우;이우창;채승완;김동현;이충권
    • 스마트미디어저널
    • /
    • 제9권4호
    • /
    • pp.162-169
    • /
    • 2020
  • 디자인은 섬유패션 산업에서 제품의 경쟁력을 결정짓는 핵심요인이다. 무단복제를 방지하고 독창성을 확인하기 위하여 제시된 디자인의 유사도를 측정하는 것은 매우 중요하다. 본 연구에서는 딥러닝 기법을 이용하여 섬유 디자인의 이미지로 부터 특징(feature)을 수치화하고, 스피어만 상관계수를 이용하여 유사도를 측정하였다. 유사한 샘플이 실제로 검출되는지 검증하기 위하여 300장의 이미지를 임의로 회전 및 색상을 변경하였다. 유사도 수치가 높은 순으로 Top-3와 Top-5의 결과에 회전을 하거나 색상을 변경한 샘플이 존재하는지 측정하였다. 그 결과, AlexNet 보다 VGG-16 모델이 월등히 높은 성능을 기록하였다. VGG-16 모델의 성능은 회전 이미지의 경우에 유사도 결과값이 높은 Top-3와 Top-5에서 64%, 73.67%로 가장 높게 나타났다. 색상변경의 경우에는 Top-3와 Top-5에서 각각 86.33%, 90%로 가장 높게 나타났다.

가우시안 프로세스를 이용한 실내 환경에서 소형무인기에 적합한 SLAM 시스템 개발 (Development of a SLAM System for Small UAVs in Indoor Environments using Gaussian Processes)

  • 전영산;최종은;이정욱
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1098-1102
    • /
    • 2014
  • Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.

Vehicle Face Recognition Algorithm Based on Weighted Nonnegative Matrix Factorization with Double Regularization Terms

  • Shi, Chunhe;Wu, Chengdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2171-2185
    • /
    • 2020
  • In order to judge that whether the vehicles in different images which are captured by surveillance cameras represent the same vehicle or not, we proposed a novel vehicle face recognition algorithm based on improved Nonnegative Matrix Factorization (NMF), different from traditional vehicle recognition algorithms, there are fewer effective features in vehicle face image than in whole vehicle image in general, which brings certain difficulty to recognition. The innovations mainly include the following two aspects: 1) we proposed a novel idea that the vehicle type can be determined by a few key regions of the vehicle face such as logo, grille and so on; 2) Through adding weight, sparseness and classification property constraints to the NMF model, we can acquire the effective feature bases that represent the key regions of vehicle face image. Experimental results show that the proposed algorithm not only achieve a high correct recognition rate, but also has a strong robustness to some non-cooperative factors such as illumination variation.

Modeling Grain Rotational Disruption by Radiative Torques and Extinction of Active Galactic Nuclei

  • Giang, Nguyen Chau;Hoang, Thiem
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.66.1-66.1
    • /
    • 2021
  • Extinction curves observed toward individual Active Galactic Nuclei (AGN) usually show a steep rise toward Far-Ultraviolet (FUV) wavelengths and can be described by the Small Magellanic Cloud (SMC)-like dust model. This feature suggests the dominance of small dust grains of size a < 0.1 ㎛ in the local environment of AGN, but the origin of such small grains is unclear. In this paper, we aim to explain this observed feature by applying the RAdiative Torque Disruption (RATD) to model the extinction of AGN radiation from FUV to Mid-Infrared (MIR) wavelengths. We find that in the intense radiation field of AGN, large composite grains of size a > 0.1 ㎛ are significantly disrupted to smaller sizes by RATD up to dRATD > 100 pc in the polar direction and dRATD ~ 10 pc in the torus region. Consequently, optical-MIR extinction decreases, whereas FUV-near-Ultraviolet extinction increases, producing a steep far-UV rise extinction curve. The resulting total-to selective visual extinction ratio thus significantly drops to RV < 3.1 with decreasing distances to AGN center due to the enhancement of small grains. The dependence of RV with the efficiency of RATD will help us to study the dust properties in the AGN environment via photometric observations. In addition, we suggest that the combination of the strength between RATD and other dust destruction mechanisms that are responsible for destroying very small grains of a <0.05 ㎛ is the key for explaining the dichotomy observed "SMC" and "gray" extinction curve toward many AGN.

  • PDF