• Title/Summary/Keyword: Model foundation

Search Result 2,211, Processing Time 0.024 seconds

Soil foundation effect on the vibration response of concrete foundations using mathematical model

  • Dezhkam, Behzad;Yaghfoori, Ali
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.221-225
    • /
    • 2018
  • In this paper, vibration analysis of concrete foundations resting on soil medium is studied. The soil medium is simulated by Winkler model considering spring element. The concrete foundation is modeled by thick plate elements based on classical plate theory (CPT). Utilizing energy method consists of potential energy, kinetic energy and external works in conjunction with Hamilton's principle, the motion equations are derived. Assuming the simply supported boundary condition for the concrete foundation, the Navier method is used for calculating the frequency of the structure. The effect of different parameters such as soil medium, mode numbers, length to width ratio and length to thickness ratio of the concrete foundation are shown on the frequency of the structure. At the first, the results are validated with other published works in order to show the accuracy of the obtained results. The results show that considering the soil medium, the frequency of the structure increases significantly.

Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.509-519
    • /
    • 2019
  • In this paper, an analytical approach for the free vibration analysis of spiral stiffened functionally graded (SSFG) cylindrical shells is investigated. The SSFG shell is resting on linear and non-linear elastic foundation with damping force. The elastic foundation for the linear model is according to Winkler and Pasternak parameters and for the non-linear model, one cubic term is added. The material constitutive of the stiffeners is continuously changed through the thickness. Using the Galerkin method based on the von $K\acute{a}rm\acute{a}n$ equations and the smeared stiffeners technique, the non-linear vibration problem has been solved. The effects of different geometrical and material parameters on the free vibration response of SSFG cylindrical shells are adopted. The results show that the angles of stiffeners and elastic foundation parameters strongly effect on the natural frequencies of the SSFG cylindrical shell.

Damage Monitoring in Foundation-Structure Interface of Harbor Caisson Using Vibration-based Autoregressive Model (진동기반 자기회귀모델을 통한 항만케이슨 지반-구조 경계부의 손상 모니터링)

  • Lee, So-Ra;Lee, So-Young;Kim, Jeong-Tae;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • This study presents the damage monitoring method in foundation-structure interface of harbor caisson using vibration-based autoregressive (AR) model. In order to achieve the objective, the following approaches are implemented. Firstly, vibration-based AR model is selected to monitor the damage in foundation-structure interface of caisson structure. Secondly, finite element analysis on a caisson structure model is implemented to evaluate the vibration-based damage monitoring method. Finally, vibration test on a caisson structure model is performed to evaluate applicability of vibration-based AR model method for foundation-structure interface of caisson structure.

Comparative study on bearing characteristics of pervious concrete piles in silt and clay foundations

  • Cai, Jun;Du, Guangyin;Xia, Han;Sun, Changshen
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.595-604
    • /
    • 2021
  • With the advantages of high permeability and strength, pervious concrete piles can be suitable for ground improvement with high water content and low bearing capacity. By comparing the strength and permeability of pervious concrete with different aggregate sizes (3-5 mm and 4-6 mm) and porosities (20%, 25%, 30% and 35%), the recommended aggregate size (3-5 mm) and porosity (30%) can be achieved. The model tests of the pervious concrete piles in soft soil (silt and clay) foundations were conducted to evaluate the bearing characteristics, results show that, for the higher consolidation efficiency of the silty foundation, the bearing capacity of the silty foundation is 16% higher, and the pile-soil stress ratio is smaller. But when it is the ultimate load for the piles, they will penetrate into the underlying layer, which reduces the pile-soil stress ratios. With higher skin friction of the pile in the silty foundation, the pile penetration is smaller, so the decrease of the pile axial force can be less. For the difference in consolidation efficiency, the skin friction of pile in silt is more affected by the effective stress of soil, while the skin friction of pile in clay is more affected by the lateral stress. When the load reaches 4400 N, the skin friction of the pile in the silty foundation is about 35% higher than that of the clay foundation.

Experimental Study on Geogrid-Mattress Fundation (지오그리드 매트리스기초에 관한 실험적 연구)

  • 주재우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.182-190
    • /
    • 1994
  • Mattress foundations using geogrids are often used on soil foundations to increase the supporting capability of a mattress-soil foundation system, in which the mattress foundation trasmits a point load applied above to a wider area of the soil foundation underneath. To examine this load dispersion capability of the mattress foundation, model experiments were carried out on lab-floor. Expecially, the effect of the thickness of the mattress and the subgrade modulus of the soil foundation on load dispersion are considered. The load distribution and the tensile force generated on geogrid of the upper part of the mattress are examined in the paper.

  • PDF

Free Vibration Analysis of Thick Plate Subjected to In-plane Force on Inhomogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓인 면내력을 받는 후판의 진동해석)

  • Lee, Yong Soo;Kim, Il Jung;Oh, Soog Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.291-298
    • /
    • 2003
  • Recently, as the size of buildings structure becomes large increases, their mat area of building structure is supported or by an inhomogeneous foundation. This paper presents a vibration analysis on thick plates subjected to in-plane force is presented in this paper. The rectangular plate is isotropic, homogeneous, and composed of a linearly elastic material. A vibration analysis of the rectangular thick plate iwas done by useing ofarectangular finite element with 8 nodes and 9 nodes. In this study, the foundation was idealized as a Pasternak foundation model. A Pasternak foundation haves a shear layer on Winkler's model, which idealizes the foundation as a vertical spring. In order tTo analysze the vibration of a plate supported on by an inhomogeneous Pasternak foundation, the value of the Winkler foundation parameter of the central and border zones of the plate awere chosen as WFP1 and WFP2. (fFigure 4.). The Winkler foundation parameter of WFP1 and WFP2 is varied from 0 to 10, $10^2$, and $10^3$ and the shear foundation parameters is were 0, 5, and 10. The ratio of the in-plane force to the critical load iwas applied as 0.4 to 0.8

Symmetrically loaded beam on a two-parameter tensionless foundation

  • Celep, Z.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.555-574
    • /
    • 2007
  • Static response of an elastic beam on a two-parameter tensionless foundation is investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated edge loads. Governing equations of the problem are obtained and solved by pointing out that a concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis in the case of complete contact and a discontinuity in the foundation reactions in the case of partial contact come into being as a direct result of the two-parameter foundation model. The numerical solution of the complete contact problem is straightforward. However, it is shown that the problem displays a highly non-linear character when the beam lifts off from the foundation. Numerical treatment of the governing equations is accomplished by adopting an iterative process to establish the contact length. Results are presented in figures to demonstrate the linear and non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively.

Experimental study on tuned liquid damper performance in reducing the seismic response of structures including soil-structure interaction effect

  • Lou, Menglin;Zong, Gang;Niu, Weixin;Chen, Genda;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.275-290
    • /
    • 2006
  • In this paper, the performance of a tuned liquid damper (TLD) in suppressing the seismic response of buildings is investigated with shake table testing of a four-story steel frame model that rests on pile foundation. The model tests were performed in three phases with the steel frame structure alone, the soil and pile foundation system, and the soil-foundation-structure system, respectively. The test results from different phases were compared to study the effect of soil-structure interaction on the efficiency of a TLD in reducing the peak response of the structure. The influence of a TLD on the dynamic response of the pile foundation was investigated as well. Three types of earthquake excitations were considered with different frequency characteristics. Test results indicated that TLD can suppress the peak response of the structure up to 20% regardless of the presence of soils. TLD is also effective in reducing the dynamic responses of pile foundation.

Applied methods for seismic assessment of scoured bridges: a review with case studies

  • Guo, Xuan;Badroddin, Mostafa;Chen, ZhiQiang
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.497-507
    • /
    • 2017
  • Flooding induced scour has been long recognized as a major hazard to river-crossing bridges. Many studies in recent years have attempted to evaluate the effects of scour on the seismic performance of bridges, and probabilistic frameworks are usually adopted. However, direct and straightforward insight about how foundation scour affects bridges as a type of soil-foundation-structure system is usually understated. In this paper, we provide a comprehensive review of applied methods centering around seismic assessment of scoured bridges considering soil-foundation-structure interaction. When introducing these applied analysis and modeling methods, a simple bridge model is provided to demonstrate the use of these methods as a case study. Particularly, we propose the use of nonlinear modal pushover analysis as a rapid technique to model scoured bridge systems, and numerical validation and application of this procedure are given using the simple bridge model. All methods reviewed in this paper can serve as baseline components for performing probabilistic vulnerability or risk assessment for any river-crossing bridge system subject to flood-induced scour and earthquakes.

The Review of the Health Promotion Foundation and Implication for Korea (외국의 건강증진기금 운영실태 고찰 및 시사점)

  • Jeong, Ae-Suk
    • Korean Journal of Health Education and Promotion
    • /
    • v.25 no.4
    • /
    • pp.93-110
    • /
    • 2008
  • Objectives: The study aimed at reviewing the organizational values, structures, and activities of the health promotion foundation model as a recently recommended by the World Health Organization, and exploring adequate suggestions to administer the funds in Korea. Methods: The study materials were collected from web-sites and visiting, the ThaiHealth, VicHealth, Healthway, and Health Promotion Switzerland were reviewed as the representative cases of health promotion foundation model. Results: According to the review, the health promotion foundation established based on relevant legal acts had the comprehensive and professional organizational structure with boards and committees as governing and supporting bodies. The foundations had clearly defined vision, mission, and purpose, and pursuit health promotion purpose, independent and professional decision making process, strategies and priorities to initiate broad health promotion activities, balanced funds distribution to various areas and sectors, and networking and collaborating with partners. Conclusions: Health promotion foundation is a recommendable model to lead more effective and efficient health promotion activities and to collaborate with other sectors or other countries. Expanded usages of health promotion fund into the diverse health promotion settings such as communities, work places and schools and health activities including sponsorships as well as health promotion programs need to be considered.