• Title/Summary/Keyword: Model compression

Search Result 1,782, Processing Time 0.037 seconds

A self-confined compression model of point load test and corresponding numerical and experimental validation

  • Qingwen Shi;Zhenhua Ouyang;Brijes Mishra;Yun Zhao
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.465-474
    • /
    • 2023
  • The point load test (PLT) is a widely-used alternative method in the field to determine the uniaxial compressive strength due to its simple testing machine and procedure. The point load test index can estimate the uniaxial compressive strength through conversion factors based on the rock types. However, the mechanism correlating these two parameters and the influence of the mechanical properties on PLT results are still not well understood. This study proposed a theoretical model to understand the mechanism of PLT serving as an alternative to the UCS test based on laboratory observation and literature survey. This model found that the point load test is a self-confined compression test. There is a compressive ellipsoid near the loading axis, whose dilation forms a tensile ring that provides confinement on this ellipsoid. The peak load of a point load test is linearly positive correlated to the tensile strength and negatively correlated to the Poisson ratio. The model was then verified using numerical and experimental approaches. In numerical verification, the PLT discs were simulated using flat-joint BPM of PFC3D to model the force distribution, crack propagation and BPM properties' effect with calibrated micro-parameters from laboratory UCS test and point load test of Berea sandstones. It further verified the mechanism experimentally by conducting a uniaxial compressive test, Brazilian test, and point load test on four different rocks. The findings from this study can explain the mechanism and improve the understanding of point load in determining uniaxial compressive strength.

Minimum area for circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression

  • Inocencio Luevanos-Soto;Arnulfo Luevanos-Rojas;Victor Manuel Moreno-Landeros;Griselda Santiago-Hurtado
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.201-217
    • /
    • 2024
  • This study aims to develop a new model to obtain the minimum area in circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression, i.e., a part of the contact area of the footing is subject to compression and the other there is no pressure (pressure zero). The new model is formulated from a mathematical approach based on a minimum area, and it is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My" in function of σmax (available allowable soil pressure) R (radius of the circular footing), α (angle of inclination where the resultant moment appears), y0 (distance from the center of the footing to the neutral axis measured on the axis where the resultant moment appears). The normal practice in structural engineering is to use the trial and error procedure to obtain the radius and area of the circular footing, and other engineers determine the radius and area of circular footing under biaxial bending supported on elastic soils, but considering a concentric column and the contact area with the ground works completely in compression. Three numerical problems are given to determine the lowest area for circular footings under biaxial bending. Example 1: Column concentric. Example 2: Column eccentric in the direction of the X axis to 1.50 m. Example 3: Column eccentric in the direction of the X axis to 1.50 m and in the direction of the Y axis to 1.50 m. The new model shows a great saving compared to the current model of 44.27% in Example 1, 50.90% in Example 2, 65.04% in Example 3. In this way, the new minimum area model for circular footings will be of great help to engineers when the column is located on the center or edge of the footing.

A Study for an Evaluation of Flexural Strength of Plate Girders Reinforced with One Line of Longitudinal Stiffeners (수평보강재로 1단 보강된 플레이트거더의 휨강도 평가 방안 연구)

  • Kim, Byung Jun;Park, Yong Myung;Mykyta, Kovalenko;Cho, Kwang Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.281-289
    • /
    • 2017
  • The current AASHTO LRFD and Eurocode 3 specifications have been found to underestimate the flexural strength of longitudinally reinforced plate girders. This is because the web-flange interaction is not considered appropriately when a web is reinforced. The buckling strength of compression flange increases due to the improved rotational restraint to the compression flange. Also, the compression flange and the longitudinal stiffener could constrain the web rotation, so that a certain area of the web reaches yield strength. In this study, a model for evaluating the flexural strength is proposed for plate girders reinforced with one line of longitudinal stiffeners, considering the increase of the buckling strength of the compression flange and the actual stress distribution of the web. The flexural strengths of the conventional steel(SM490) and the high-strength steel(HSB800) plate girders were evaluated from the nonlinear analysis and the applicability of the proposed model was analyzed.

Inoformation Compression of Myoelectric M-wave Evoked by Electrical Stimulus using AR Model (AR 모델을 이용한 전기자극에 대한 근신호 M -wave의 정보압축)

  • 김덕영;박종환;김성환
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.307-314
    • /
    • 1999
  • This paper describes an informatlon compression of electrically evoked myoelectric signal, M-wave. This wave shows a direct response m lato-response of nerve conductlQn study and has a characteristic with finite time support. M-wave is a useful factor for investing neurodi~ease and is often desirable to have a compact description of its shape and time evolution. The aim of this paper is to show that the AR modeling IS a effective method for compressing an information of M-wave. First, AR model parameters of real M-wave are estimated. And then. they are verified by approximatmg a M-wave using estimated AR parameters and by comparing to other melhod, Hermite tlansform[4]. To concretely evaluate the proposed method, the NMSE(normalized mean square error) of approximation curves are compared. As a result, AR modeling is effective for M-wave assessment because of its capability for the information compression.

  • PDF

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

A Tone Compression Model for the Compensation of White Point Shift Generated from HDR Rendering (HDR 렌더링으로 인한 화이트 포인트 이동의 보상을 위한 톤 압축 모델)

  • Chae, Seok-Min;Lee, Sung-Hak;Kwon, Hyuk-Ju;Sohng, Kyu-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2012
  • Recently, a new image appearance model, named iCAM06, was developed for High-Dynamic-Range (HDR) image rendering. The dynamic range of a HDR image needs to be mapped on the range of output devices, which is called the tone reproduction or tone mapping. The iCAM06, the representative HDR rendering algorithm also uses the tone compression using a S-curve mapping function for image reproduction on the dynamic range of output devices. However the iCAM06 occurs white point shift during its tone compression process. Therefore, we propose a compensation method for white point shift problem using the corrected channel gain function. Experiment results show that the proposed method has better performance than the iCAM06.

Grouping-based 3D Animation Data Compression Method (군집화 기반 3차원 애니메이션 데이터 압축 기법)

  • Choi, Young-Jin;Yeo, Du-Hwan;Klm, Hyung-Seok;Kim, Jee-In
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.461-468
    • /
    • 2008
  • The needs for visualizing interactive multimedia contents on portable devices with realistic three dimensional shapes are increasing as new ubiquitous services are coming into reality. Especially in digital fashion applications with virtual reality technologies for clothes of various forms on different avatars, it is required to provide very high quality visual models over mobile networks. Due to limited network bandwidths and memory spaces of portable devices, it is very difficult to transmit visual data effectively and render realistic appearance of three dimensional images. In this thesis, we propose a compression method to reduce three dimensional data for digital fashion applications. The three dimensional model includes animation of avatar which require very large amounts of data over time. Our proposed method utilizes temporal and spatial coherence of animation data, to reduce the amount. By grouping vertices from three dimensional models, the entire animation is represented by a movement path of a few representative vertices. The existing three dimensional model compression approaches can get benefits from the proposed method by reducing the compression sources through grouping. We expect that the proposed method to be applied not only to three dimensional garment animations but also to generic deformable objects.

  • PDF

Provenance Compression Scheme Considering RDF Graph Patterns (RDF 그래프 패턴을 고려한 프로버넌스 압축 기법)

  • Bok, kyoungsoo;Han, Jieun;Noh, Yeonwoo;Yook, Misun;Lim, Jongtae;Lee, Seok-Hee;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.2
    • /
    • pp.374-386
    • /
    • 2016
  • Provenance means the meta data that represents the history or lineage of a data in collaboration storage environments. Therefore, as provenance has been accruing over time, it takes several ten times as large as the original data. The schemes for effciently compressing huge amounts of provenance are required. In this paper, we propose a provenance compression scheme considering the RDF graph patterns. The proposed scheme represents provenance based on a standard PROV model and encodes provenance in numeric data through the text encoding. We compress provenance and RDF data using the graph patterns. Unlike conventional provenance compression techniques, we compress provenance by considering RDF documents on the semantic web. In order to show the superiority of the proposed scheme, we compare it with the existing scheme in terms of compression ratio and the processing time.

Tests and finite element analysis on the local buckling of 420 MPa steel equal angle columns under axial compression

  • Shi, G.;Liu, Z.;Ban, H.Y.;Zhang, Y.;Shi, Y.J.;Wang, Y.Q.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.31-51
    • /
    • 2012
  • Local buckling can be ignored for hot-rolled ordinary strength steel equal angle compression members, because the width-to-thickness ratios of the leg don't exceed the limit value. With the development of steel structures, Q420 high strength steel angles with the nominal yield strength of 420 MPa have begun to be widely used in China. Because of the high strength, the limit value of the width-to-thickness ratio becomes smaller than that of ordinary steel strength, which causes that the width-to-thickness ratios of some hot-rolled steel angle sections exceed the limit value. Consequently, local buckling must be considered for 420 MPa steel equal angles under axial compression. The existing research on the local buckling of high strength steel members under axial compression is briefly summarized, and it shows that there is lack of study on the local buckling of high strength steel equal angles under axial compression. Aiming at the local buckling of high strength steel angles, this paper conducts an axial compression experiment of 420MPa high strength steel equal angles, including 15 stub columns. The test results are compared with the corresponding design methods in ANSI/AISC 360-05 and Eurocode 3. Then a finite element model is developed to analyze the local buckling behavior of high strength steel equal angles under axial compression, and validated by the test results. Following the validation, a finite element parametric study is conducted to study the influences of a range of parameters, and the analysis results are compared with the design strengths by ANSI/AISC 360-05 and Eurocode 3.

p-Version Nonlinear Finite Element Analysis of RC Slabs Strengthened with Externally Bonded CFRP Sheets (탄소섬유보강 플라스틱시트로 외부보강된 RC 슬래브의 p-Version 비선형 유한요소 해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • The p-version nonlinear finite element model has been developed to analyze the nonlinear behavior of simply supported RC slabs strengthened with carbon fiber reinforced plastic sheets. The shape function is adopted with integral of Legendre polynomials. The compression model of concrete is based on the Kupfer's yield criterion, hardening rule, and crushing condition. The cracking behavior is modeled by a smeared crack model. In this study, the fixed crack approach is adopted as being geometrically fixed in direction once generated. Each steel layer has a uniaxial behavior resisting only the axial force in the bar direction. Identical behavior is assumed fur tension and compression of steel according to the elastic modulus. The carbon fiber reinforced plastic sheets are considered as reinforced layers of equivalent thickness with uniaxial strength and rigidity properties in the present model. It is shown that the proposed model is able to adequately predicte the displacement and ultimate load of nonlinear simply supported RC slabs by a patch with respect to reinforcement ratio, thickness and angles of CFRP sheets.