• 제목/요약/키워드: Model coil

검색결과 454건 처리시간 0.026초

코일형 한류소자의 교류손실 특성 (AC Loss Characteristic in the Fault Current Limiting Elements of a Coil Type)

  • 류경우;마용호
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.370-374
    • /
    • 2005
  • AC loss of a superconducting conductor has a strong influence on the economic viability of a superconducting fault current limiter, which offers an attractive means to limit short circuit current in power systems. Therefore, the AC loss characteristics in several fault current limiting elements of a coil type have been investigated experimentally. The test result shows that AC losses measured in the fault current limiting elements depend on arrangement of a voltage lead. The AC loss of a bifilar coil is smallest among the fault current limiting elements of the coil type. The measured AC loss of the bifilar coil is much smaller than that calculated from Norris's elliptical model. However, the loss measured in a meander, which is frequently used in a resistive fault current limiter, agrees well to the theoretical one.

Fault Current Limitation by a Superconducting Coil with a Reversely Magnetized Core for a Fault Current Controller

  • Ahn, Min Cheol;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권4호
    • /
    • pp.36-40
    • /
    • 2012
  • This paper presents an experimental and numerical study on current limiting characteristics of a fault current controller (FCC). The FCC consists of an AC/DC power converter, a superconducting coil, and a control unit. Even though some previous researches proved that the FCC could adjust the fault current level, the current limiting characteristics by the superconducting coil should be investigated for design of the coil. In this paper, four kinds of model coils were tested; 1) air core, 2) iron core without any bias, 3) reversely magnetized core (RMC) using permanent magnets, and 4) RMC using an electromagnet. Based on a comparative study, it is confirmed that a RMC by an electromagnet (EM) could increase the effective inductance of the coil. In this paper, a numerical code to simulate the HTS coil with RMC was developed. This code can be applied to design the HTS coil with active reversely magnetized bias coil.

코일형 탄소성 감쇠기에 대한 실험 및 수치해석적 연구 (Experiments and Numerical Studies on Coil Shaped Elastoplastic Dampers)

  • 조근희;하동호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.381-388
    • /
    • 2001
  • Behavior characteristics of coil shaped elastoplastic dampers, a sort of hysteretic damper, are studied on through experiments and numerical analyses. The coil shaped elastoplastic damper shows bilinear force-deformation relationship, and no stress concentration is occurred in the device. Numerical model, which is constructed through calibration with experimental results, shows good agreement with experiment, The coil shaped elastoplastic damper has lower yielding strength and stiffness under transversal loading compared to axial leading. Additional studies are required on behavior characteristics according to configuration variation of coil shaped elastoplastic dampers.

  • PDF

Magnetic Particle Separation by an Optimized Coil: A Graphical User Interface

  • Rouhi, Kasra;Hajiaghajani, Amirhossein;Abdolali, Ali
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.214-219
    • /
    • 2017
  • Magnetic separators that clean the fluid stream from impurities, protect the installations in numerous industries. This paper introduces a graphical user interface (GUI) which proposes an optimized coil separating magnetic particles with a radius from 1 up to 500 µm. High gradient magnetic fields are employed in an arbitrary user defined fluidic channel which is made of a nonmetallic material. The effects of coil parameters are studied and adjusted to design an optimum coil with a minimum Ohmic loss. In addition, to design the coil scheme based on the particle movements, a mathematical particle-tracing model within the fluid channels has been utilized. In comparison to conventional magnetic separators, this model is reconfigurable by the user, produces a weaker magnetic field, allows for continuous purifying and is easy to install, with high separation efficiency. The presented GUI is simple to use, where the coil's manufacturing limitations can be specified.

2차원 송신코일을 가지는 무선전력전송시스템의 모델링 (Modeling of wireless power transfer system with to dimensional transmit coil)

  • 최용오;설원규;강병극;정세교
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.349-350
    • /
    • 2016
  • In the magnetically coupled wireless power transmit (WPT), the study of the multi-dimensional transmission coil to solve the low power transmission efficiency from the location of transmit coil and receiving coil is being developed. This paper, an important step in this study, presents the magnetically coupled model of the WPT system consist of the two-dimensional transmit coil and verifies by the simulation and experiment. The induced model in this paper can be used to design the WPT circuit and controller for the maximum transmission efficiency.

  • PDF

Analysis of Temperature Dependence of Thermally Induced Transient Effect in Interferometric Fiber-optic Gyroscopes

  • Choi, Woo-Seok
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.237-243
    • /
    • 2011
  • Thermal characteristics, such as diffusivity and temperature induced change in the fiber mode index of rotation sensing fiber coil are critical factors which determine the time varying, thermo-optically induced bias drift of interferometric fiber-optic gyroscopes (IFOGs). In this study, temperature dependence of the transient effect is analyzed in terms of the thermal characteristics of the fiber coil at three different temperatures. By applying an analytic model to the measured bias in the experiments, comprehensive thermal factors of the fiber coil could be extracted effectively. The validity of the model was confirmed by the fact that the extracted values are reasonable results in comparison with well known properties of the materials of the fiber coil. Temperature induced changes in the critical factors were confirmed to be essential in compensating the transient effect over a wide temperature range.

재가열 공정과 유도 가열의 FEM 해석 (Reheating Process and FEM Analysis of Inductive Heating)

  • 손영익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.195-198
    • /
    • 1999
  • For the thixoforming process beside an existing solidus-liquidus interval, the reheating conditions to obtain the globular microstructure are very important. It relies on the control of globular microstructure of semi-solid alloys that contain non-dendritic particles. To obtain the globular microstructure in cross section of billet, the optimal design of the induction coil is necessary. Therefore, in this paper the optimal coil design to minimize electromagnetic end effect will be proposed. The results of coil design were also applied to the reheating process to obtain a fine globular microstructure. Finally, reheating data base of aluminum alloys for thixoforming and FEM model for induction heating based on the optimal coil design have been proposed.

  • PDF

VCM을 이용한 비원형 형상 가공의 궤적 오차 시뮬레이션 (Simulation of tracking errors for non-circular cutting using voice coil motor)

  • 황진동;곽용길;김선호;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.57-58
    • /
    • 2006
  • A Simulation model is developed to minimize the path tracking errors when the non-circular cutting is done by a VCM(voice coil motor) driven tool. The relationship between PWM(Pulse Width Modulation) duty ratio and velocity of voice coil motor is theoretically derived from combining the circuit equation for the coils and the motion equation for the magnetic rod of the voice coil motor. The path tracking errors are showed differently according to the rotational speed, the number of segments and the control period in digital control. Given a required accuracy in the non-circular cutting, the optimal values for those parameters are determined based on the developed simulation model.

  • PDF

6.6kV급 고온초전도 한류기용 HTS 코일의 절연 설계 및 시험 (Insulation Design and Testing of HTS coil for 6.6 kV Class HTSFCL)

  • 백승명;정종만;곽동순;류엔반둥;김상현
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.263-268
    • /
    • 2003
  • The Electrical insulation design and testing of high temperature superconducting (HTS) coil for high temperature superconducting fault current limiter (HTSFCL) has been performed. Electrical insulating factors of HTS coil for HTSFCL are turn-to-turn, layer-to-layer. The electrical insulation of turn-to-turn depends on surface length, and the electrical insulation of layer-to-layer depends on surface length and breakdown strength of L$N_2$. Therefore, two basic characteristics of breakdown and flashover voltage were experimentally investigated to design electrical insulation for 6.6㎸ Class HTSFCL. We used Weibull distribution to set electric field strength for insulation design. And mini-model HTS coil for HTSFCL was designed by using Weibull distribution and was manufactured to investigate breakdown characteristics. The mini-model HTS coil had passed in AC and Impulse withstand test.

  • PDF

초전도 코일을 이용한 DC 회로 차단기의 차단 능력 특성 (Characteristics of Interruption Ability in DC Circuit Breaker using Superconducting Coil)

  • 정인성;최혜원;윤정일;최효상
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.215-219
    • /
    • 2019
  • Development of DC interruption technology is being studied actively for enhanced DC grid reliability and stability. In this study, coil type superconductor DC circuit breaker was proposed as DC interruption. It is integration technology that combined current-limiting technique using superconductor and cut-off technique using mechanical DC circuit breaker. Superconductor was applied to the coil type. In simulation, Mayr arc model was applied to realize the arc characteristic in the mechanical DC circuit breaker. PSCAD/EMTDC had used to model and perform the simulation. To find out the protection range of coil type superconductor DCCB, the working operation have analyzed based on the rated voltage of DCCB. The results confirmed that, according to apply the limiting device, the protection range was increased in twice. Therefore, the probability of failure of interruption has lowered significantly.