Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.2.214

Magnetic Particle Separation by an Optimized Coil: A Graphical User Interface  

Rouhi, Kasra (Applied Electromagnetics Lab, School of Electrical Engineering, Iran University of Science and Technology)
Hajiaghajani, Amirhossein (Applied Electromagnetics Lab, School of Electrical Engineering, Iran University of Science and Technology)
Abdolali, Ali (Applied Electromagnetics Lab, School of Electrical Engineering, Iran University of Science and Technology)
Publication Information
Abstract
Magnetic separators that clean the fluid stream from impurities, protect the installations in numerous industries. This paper introduces a graphical user interface (GUI) which proposes an optimized coil separating magnetic particles with a radius from 1 up to 500 µm. High gradient magnetic fields are employed in an arbitrary user defined fluidic channel which is made of a nonmetallic material. The effects of coil parameters are studied and adjusted to design an optimum coil with a minimum Ohmic loss. In addition, to design the coil scheme based on the particle movements, a mathematical particle-tracing model within the fluid channels has been utilized. In comparison to conventional magnetic separators, this model is reconfigurable by the user, produces a weaker magnetic field, allows for continuous purifying and is easy to install, with high separation efficiency. The presented GUI is simple to use, where the coil's manufacturing limitations can be specified.
Keywords
Magnetic separation; Graphical user interface (GUI); High gradient magnetic field; Multi turn Coil;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Miltenyi, W. Muller, W. Weichel, and A. Radbruch, Cytometry 11, 231 (1990).   DOI
2 C. Alexiou, R. J. Schmid, R. Jurgons, M. Kremer, G. Wanner, C. Bergemann, E. Huenges, T. Nawroth, W. Arnold, and F. G. Parak, Eur. Biophys. J. 35, 446 (2006).   DOI
3 S. Sanchez, A. A. Solovev, S. M. Harazim, and O. G. Schmidt, J. Am. Chem. Soc. 133, 701 (2011).   DOI
4 T. B. Jones, Cambridge University Press, (1995).
5 S. Rudge, C. Peterson, C. Vessely, J. Koda, S. Stevens, and L. Catterall, J. Control. Release 74, 335 (2001).   DOI
6 A. D. Grief and G. Richardson, J. Magn. Magn. Mater. 293, 455 (2005).   DOI
7 W. Peukert, H. C. C. Schwarzer, and F. Stenger, Chem. Eng. Process. Process Intensif. 44, 245 (2005).   DOI
8 N. C. L. Hess, D. J. Carlson, J. D. Inder, E. Jesulola, J. R. Mcfarlane, and N. A. Smart, Physiol. Res. 65, 461 (2016).
9 R. Werner and B. Wolf-Jurgen, Non-Dest. Test. in Civ. Eng., Germany (2003).
10 C. W. Yung, J. Fiering, A. J. Mueller, and D. E. Ingber, Lab on a Chip 9, 1171 (2009).   DOI
11 O. Lara, X. Tong, M. Zborowski, and J. J. Chalmers, Exp. Hematol. 32, 891 (2004).   DOI
12 Y. H. Jang, M. J. Hancock, S. B. Kim, S. Selimovic, W. Y. Sim, H. Bae, and A. Khademhosseini, Lab on a Chip 11, 3277 (2011).   DOI
13 P. O. Krutzik, J. M. Crane, M. R. Clutter, and G. P. Nolan, Nat. Chem. Biol. 4, 132 (2008).   DOI
14 J. Oberteuffer, IEEE Trans. Magn. 10, 223 (1974).   DOI
15 H. A. Pohl, Cambridge Univ. Press, Cambridge (1978) pp. 232-254.
16 F. Petersson, A. Nilsson, C. Holm, H. Jonsson, and T. Laurell, Analyst 129, 938 (2004).   DOI
17 P. R. C. Gascoyne and Jody Vykoukal, Electrophoresis 23, 1973 (2002).   DOI
18 Y. Terashima, H. Ozaki, and M. Sekine, Water Res. 20, 537 (1986).   DOI
19 J. H. P. Watson, J. Appl. Phys. 44, 4209 (1973).   DOI
20 M. Franzreb and W. H. Hoell, IEEE Trans. Appl. Supercond. 10, 923 (2000).   DOI