• Title/Summary/Keyword: Model calibration

Search Result 1,570, Processing Time 0.032 seconds

Design and Performance Evaluation of Low-Temperature Vacuum Blackbody System (저온-진공 흑체시스템의 설계 및 성능 평가)

  • Kim, Ghiseok;Chang, Ki Soo;Lee, Sang-Yong;Kim, Geon-Hee;Kim, Dong-Ik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.336-341
    • /
    • 2013
  • In this paper, the design concept of a low-temperature vacuum blackbody was described, and thermophysical model of the blackbody was numerically evaluated. Also the working performance of low-temperature vacuum blackbody was evaluated using infrared camera system. The blackbody system was constructed to operate under high-vacuum conditions ($2.67{\times}10^{-2}$ Pa) to reduce temperature uncertainty, which is caused by vapor condensation at low temperatures usually below 273 K. In addition, both heat sink and heat shield including cold shield were installed around radiator to prevent heat loss from the blackbody. Simplified mathematical model of blackbody radiator was analyzed using modified Stefan-Boltzmann's rule. The infrared radiant performance of the blackbody was evaluated using infrared camera. Based on the results of measurements, and simulation, temperature stability of the low-temperature vacuum blackbody demonstrated that the blackbody system can serve as a highly stable reference source for the calibration of an infrared optical system.

A Design of Wideband Frequency Synthesizer for Mobile-DTV Applications (Mobile-DTV 응용을 위한 광대역 주파수 합성기의 설계)

  • Moon, Je-Cheol;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.40-49
    • /
    • 2008
  • A Frequency synthesizer for mobile-DTV applications is implemented using $0.18{\mu}m$ CMOS process with 1.8V supply. PMOS transistors are chosen for VCO core to reduce phase noise. The measurement result of VCO frequency range is 800MHz-1.67GHz using switchable inductors, capacitors and varactors. We use varactor bias technique for the improvement of VCO gain linearity, and the number of varactor biasing are minimized as two. VCO gain deterioration is also improved by using the varactor switching technique. The VCO gain and interval of VCO gain are maintained as low and improved using the VCO frequency calibration block. The sigma-delta modulator for fractional divider is designed by the co-simualtion method for accuracy and efficiency improvement. The VCO, PFD, CP and LF are verified by Cadence Spectre, and the sigma-delta modulator is simulated using Matlab Simulink, ModelSim and HSPICE. The power consumption of the frequency synthesizer is 18mW, and the VCO has 52.1% tuning range according to the VCO maximum output frequency. The VCO phase noise is lower than -100dBc/Hz at 1MHz at 1MHz offset for 1GHz, 1.5GHz, and 2GHz output frequencies.

Determination of Optimal Pressure Monitoring Locations for Water Distribution Systems using Entropy Theory (엔트로피 이론을 이용한 상수관망의 최적 압력 계측 위치 결정)

  • Chung, Gun-Hui;Chang, Dong-Eil;Yoo, Do-Guen;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.537-546
    • /
    • 2009
  • Determination of optimal pressure monitoring location is essential to manage water distribution system efficiently and safely. In this study, entropy theory is applied to overcome defects of previous researches about determining the optimal sensor location. The previous studies required the calibration using historical data, therefore, it was difficult to apply the proposed method in the place where the enough data were not available. Also, most researches have focused on the locations to minimize cost and maximize accuracy of the model, which is not appropriate for the purpose of maintenance of the water distribution system. The proposed method in this study quantify the entropy which is defined as the amount of information calculated from the pressure change due to the variation of discharge. When abnormal condition is occurred in a node, the effect on the entire network is presented by the entropy, and the emitter is used to reproduce actual pressure change pattern in EPANET. The optimal location to install pressure sensors in water distribution system is the nodes having the maximum information from other nodes. The looped and branched networks are evaluated using the proposed model. As a result, entropy theory provides general guideline to select the locations to install pressure sensors and the results can be used to help decision makers.

Prediction of Crude Protein, Extractable Fat, Calcium and Phosphorus Contents of Broiler Chicken Carcasses Using Near-infrared Reflectance Spectroscopy

  • Kadim, I.T.;Mahgoub, O.;Al-Marzooqi, W.;Annamalai, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1036-1040
    • /
    • 2005
  • Near-infrared reflectance spectroscopic (NIRS) calibrations were developed for accurate and fast prediction of whole broiler chicken carcass composition. The Feed and Forage Foss systems Model 5000 Reflectance Transport Model 5000 with near-infrared reflectance spectroscopy (NIRS)-WinISI II windows software was used for this purpose. One equation was developed for the prediction of each carcass component. One hundred and fifty freeze dried broiler whole carcass samples were ground in a Cyclotech 1,093 sample mill and analyzed for dry matter, protein, fat, calcium and phosphate. Samples were divided into two sets: a calibration set from which equations were derived and a prediction set used to validate these equations. The chemical analysis values (mean${\pm}$SD) were calculated based on dry matter basis as follows: dry matter: 33.41${\pm}$2.78 (range: 26.41-43.47), protein: 54.04${\pm}$6.63 (range: 36.20-76.09), fat 35.44${\pm}$8.34 (range: 7.50-55.03), calcium 2.55${\pm}$0.65 (range: 0.99-4.41), phosphorus 1.38${\pm}$0.26 (range: 0.60-2.28). One hundred and three samples were used to calibrate the equations and prediction values. The software used was modified to obtain partial least square regression statistics, as it is the most suitable for natural products analysis. The coefficients of determination ($R^2$) and the standard errors of prediction were 0.82 and 1.83 for the dry matter, 0.96 and 1.98 for protein, 0.99 and 1.07 for fat, 0.90 and 0.30 for calcium and 0.91 and 0.11 for phosphorus, respectively. The present study indicated that NIRS can be calibrated to predict the whole broiler carcass chemical composition, including minerals in a rapid, accurate, and cost effective manner. It neither requires skilled operators nor generates hazardous waste. These findings may have practical importance to improve instrumental procedures for quick evaluation of broiler carcass composition.

Cytokinesis-blocked micronuclei in the human peripheral lymphocytes following low dose γ-rays irradiation (저선량의 감마선 피폭된 사람 말초 임파구의 미소핵을 이용한 방사선 생물학적 피폭선량 측정법 연구)

  • Kim, Tae-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.99-104
    • /
    • 2001
  • To determine if micronucleus (MN) assay could be used to predict the absorbed dose of victims after accidental radiation exposure, we carried out to assess the absorbed dose depending on the numerical changes of MN in human peripheral blood lymphocytes after $^{60}Co\;{\gamma}-rays$ exposure in the range of 0.25 to 1 Gy, respectively. The MNs were observed at very low doses, and the numerical changes according to doses. Satisfactory dose-effect calibration curve is observed after low dose irradiation of human lymphocytes in vitro. When plotting on a linear scale against radiation dose, the line of best fit was $Y=(0.02{\pm}0.0009)+(0.033{\pm}0.010)D+(0.012{\pm}0.012)D^2$. The dose-response curve for MN induction immediately after irradiation was linear-quadratic and has a significant relationship between the frequencies of MN and dose. These data show a trend towards increase of the numbers of MN with increasing dose. The number of MN in lymphocytes that were observed in the control group is $0.1610{\pm}0.0093/cell$. Accordingly, MN assay in human peripheral lymphocytes could be a useful in viva model for studying radio-protective drug sensitivity or screening test, microdosimertic indicator and radiation-induced target organ injury. Since MN assay is simple, rapid and reproducible, it will also be a biodosimetric indicator for individual dose assessment after accidental exposure.

  • PDF

Analysis of Hydraulic Effects of Singok Submerged Weir in the Lower Han River (한강하류부 신곡수중보의 수리학적 영향분석)

  • Kim, Sang-Ho;Kim, Won;Lee, Eul-Rae;Choi, Kyu-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.401-413
    • /
    • 2005
  • This study analyzed the hydraulic effects of Singok submerged weir in the lower Han River. 1-D hydraulic flood routing model was used and calibration and verification were performed using 8 flood or nonflood events. Flow characteristics were analyzed using various outflows of Paldang Dam and tidal data of the Yellow Sea. Water level increase effects by establishment of Singok submerged weir were as following, when maximum flood tidal was 2.4m, highest water level increased about 0.65m, and lowest water level increased about 1.25m in the downstream of Jamsil submerged weir. In Hangang Bridge, due to the Singok submerged weir, when maximum flood tidal was 2.4m, tidal range was 0.07m and decrement of tidal range was about $90\%$. And when maximum flood tidal was 5.5m, tidal range was 1.6m and decrement of tidal range was about $35\%$. When the outflow of Paldang Dam was over 20,000cms, tidal range was below about 0.06m, and tidal effect did not appear hardly.

Evaluation of groundwater recharge rate for land uses at Mandae stream watershed using SWAT HRU Mapping module (SWAT HRU Mapping module을 이용한 해안면 만대천 유역의 토지이용별 지하수 함양량 평가)

  • Ryu, Jichul;Choi, Jae Wan;Kang, Hyunwoo;Kum, Donghyuk;Shin, Dong Suk;Lee, Ki Hwan;Jeong, Gyo-Cheol;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.743-753
    • /
    • 2012
  • The hydrologic models, capable of simulating groundwater recharge for long-term period and effects on it of crops management in the agricultural areas, have been used to compute groundwater recharge in the agricultural fields. Among these models, the Soil and Water Assessment Tool (SWAT) has been widely used because it could interpret hydrologic conditions for the long time considering effects of weather condition, land uses, and soil. However the SWAT model couldn't represent the spatial information of Hydrologic Response Unit (HRU), the SWAT HRU mapping module was developed in 2010. With this capability, it is possible to assume and analyze spatio-temporal groundwater recharge. In this study, groundwater recharge of rate for various crops in the Mandae stream watershed was estimated using SWAT HRU Mapping module, which can simulate spato-temporal recharge rate. As a result of this study, Coefficient of determination ($R^2$) and Nash-Sutcliffe model efficiency (NSE) for flow calibration were 0.80 and 0.72, respectively, and monthly groundwater recharge of Mandae watershed in Haean-myeon was 381.24 mm/year. It was 28% of total precipitation in 2009. Groundwater recharge rate was 73.54 mm/month and 73.58 mm/month for July and August 2009, which is approximately 18 times of groundwater recharge rate for December 2009. The groundwater recharges for each month through the year were varying. The groundwater recharge was smaller in the spring and winter seasons, relatively. So, it is necessary to enforce proper management of groundwater recharge during droughty season. Also, the SWAT HRU Mapping module could show the result of groundwater recharge as a GIS map and analyze spatio-temporal groundwater recharge. So, this method, proposed in this study, would be quite useful to make groundwater management plans at agriculture-dominant watershed.

Development of Prediction Growth and Yield Models by Growing Degree Days in Hot Pepper (생육도일온도에 따른 고추의 생육 및 수량 예측 모델 개발)

  • Kim, Sung Kyeom;Lee, Jin Hyoung;Lee, Hee Ju;Lee, Sang Gyu;Mun, Boheum;An, Sewoong;Lee, Hee Su
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.424-430
    • /
    • 2018
  • This study was carried out to estimate growth characteristics of hot pepper and to develop predicted models for the production yield based on the growth parameters and climatic elements. Sigmoid regressions for the prediction of growth parameters in terms of fresh and dry weight, plant height, and leaf area were designed with growing degree days (GDD). The biomass and leaf expansion of hot pepper plants were rapidly increased when 1,000 and 941 GDD. The relative growth rate (RGR) of hot pepper based on dry weight was formulated by Gaussian's equation RGR $(dry\;weight)=0.0562+0.0004{\times}DAT-0.00000557{\times}DAT^2$ and the yields of fresh and dry hot pepper at the 112 days after transplanting were estimated 1,387 and 291 kg/10a, respectively. Results indicated that the growth and yield of hot pepper were predicted by potential growth model under plastic tunnel cultivation. Thus, those models need to calibration and validation to estimate the efficacy of prediction yield in hot pepper using supplement a predicting model, which was based on the parameters and climatic elements.

Radiological Characterization of the High-sensitivity MOSFET Dosimeter (고감도 MOSFET 선량계 방사선학적 특성 연구)

  • Cho Sung Koo;Kim Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.215-219
    • /
    • 2004
  • Due to their excellence for the high-energy therapy range of photon beams, researchers show increasing interest in applying MOSFET dosimeters to low- and medium-energy applications. In this energy range, however, MOSFET dosimeter is complicated by the fact that the interaction probability of photons shows significant dependence on the atomic number, Z, due to photoelectric effect. The objective of this study is to develop a very detailed 3-dimensional Monte Carlo simulation model of a MOSFET dosimeter for radiological characterizations and calibrations. The sensitive volume of the High-Sensitivity MOSFET dosimeter is very thin (1 ${\mu}{\textrm}{m}$) and the standard MCNP tallies do not accurately determine absorbed dose to the sensitive volume. Therefore, we need to score the energy deposition directly from electrons. The developed model was then used to study various radiological characteristics of the MOSFET dosimeter. the energy dependence was quantified for the energy range 15 keV to 6 MeV; finding maximum dependence of 6.6 at about 40 keV. A commercial computer code, Sabrina, was used to read the particle track information from an MCNP simulation and count the tracks of simulated electrons. The MOSFET dosimeter estimated the calibration factor by 1.16 when the dosimeter was at 15 cm depth in tissue phantom for 662 keV incident photons. Our results showed that the MOSFET dosimeter estimated by 1.11 for 1.25 MeV photons for the same condition.

  • PDF

The Review of Optimum Level of SDR in Empirical Soil Erosion Model (경험적 토사유실모형에서 SDR의 적정성 검토)

  • Lee, Geun-Sang;Park, Jin-Hyeog;Lee, Eul-Rae;Hwang, Eui-Ho;Chae, Hyo-Sok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.774-778
    • /
    • 2010
  • Upland erosion pollutes surface waters and often causes serious problems when deposition occurs. This study builds a sediment rating curve using the measured sediment yield and the simulated soil erosion by a GIS-embedded empirical model. The coefficient of determination ($R^2$) between the simulated soil erosion and the measurement sediment yields with rainfall amount are 0.427 for Donghyang and 0.667 for Cheonchen, but the values with rainfall intensity are 0.873 and 0.927 respectively. The data are divided into two groups: one for calibration during 2002-2005 (48 months) and the other for estimation during 2006-2008 (36 months). The first data group (2002-2005) was used to derive the SDR with an aid of soil erosion calculated by the USLE and the measured sediment yield. The mean SDR with rainfall amount is 6.273 and 3.353, respectively, while 4.799 and 2.874 for rainfall intensity. But the standard deviation (STD) with rainfall intensity is 0.930 and 0.407, which is much less than that with rainfall amount (3.746 and 2.090) for both sites. The results show the derived SDR provides reasonable accuracy and rainfall intensity gives better performance in calculating soil erosion than rainfall amount.

  • PDF