• 제목/요약/키워드: Model building

검색결과 6,066건 처리시간 0.033초

DEVELOPMENT OF BUILDING INFORMATION MODEL FOR RESOURCES OPTIMIZATION IN CONSTRUCTION PROJECT

  • Gopal M. Naik;Rokhsareh Badamahgan
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.634-639
    • /
    • 2013
  • The aim of the study is to develop the 3D visualization of Building Information Model and integrated 4D model for optimization of resources in the construction project. This study discuss the process of methodology and creation of 4D model of the project and simulate it to monitor the workflow at the site. Different stages of the construction process and activities are generated by using Revit and MS Project. MS project has been used for creation of the schedules and these are linked with the Revit for 3D modeling. The time used as the fourth dimension and 4D model created by using Navisworks Time liner software. Narges shopping center is presented as a case study to realize the actual uses and benefits of Building Information Model (BIM). Narges shopping mall is located in Tehran, Iran. As a part of Hekmat master plan, Narges shopping center is an 11 stores building with a total area of 30000 Sq.m. This shopping and entertainment center is comprised of 150 retails and two multi-use public halls with a capacity of 400 persons each and underground parking with total 400 parking space. The main purpose of architecture was to create an urban public center along with its revolving, spiral like form and an ever changing continuous façade by means of different colors, materials, which is in harmony with the other building of the master plan. The approximate cost of the project is $17 million and duration of the project schedule is 30 months. The developed Building Information Model enabled us to identify the potential collisions or clashes between various structural and architectural systems. 4D model has been used for limiting the interaction between subcontractors installing the different systems so rework could be avoided and productivity maximized. It is also observed that the utility of BIM for construction stimulation and clash detection is the best suitable method. Clash detection before the implementation of work is highly recommended to avoid rework.

  • PDF

Using neural networks to model and predict amplitude dependent damping in buildings

  • Li, Q.S.;Liu, D.K.;Fang, J.Q.;Jeary, A.P.;Wong, C.K.
    • Wind and Structures
    • /
    • 제2권1호
    • /
    • pp.25-40
    • /
    • 1999
  • In this paper, artificial neural networks, a new kind of intelligent method, are employed to model and predict amplitude dependent damping in buildings based on our full-scale measurements of buildings. The modelling method and procedure using neural networks to model the damping are studied. Comparative analysis of different neural network models of damping, which includes multi-layer perception network (MLP), recurrent neural network, and general regression neural network (GRNN), is performed and discussed in detail. The performances of the models are evaluated and discussed by tests and predictions including self-test, "one-lag" prediction and "multi-lag" prediction of the damping values at high amplitude levels. The established models of damping are used to predict the damping in the following three ways : (1) the model is established by part of the data measured from one building and is used to predict the another part of damping values which are always difficult to obtain from field measurements : the values at the high amplitude level. (2) The model is established by the damping data measured from one building and is used to predict the variation curve of damping for another building. And (3) the model is established by the data measured from more than one buildings and is used to predict the variation curve of damping for another building. The prediction results are discussed.

Dynamic Characterization of Sub-Scaled Building-Model Using Novel Optical Fiber Accelerometer System

  • Kim, Dae-Hyun
    • 비파괴검사학회지
    • /
    • 제31권6호
    • /
    • pp.601-608
    • /
    • 2011
  • This paper presents the damage assessment of a building structure by using a novel optical fiber accelerometer system. Especially, a sub-scaled building model is designed and manufactured to check up the feasibility of the optical fiber accelerometer for structural health monitoring. The novel accelerometer exploits the moir$\acute{e}$ fringe optical phenomenon and two pairs of optical fibers to measure the displacement with a high accuracy, and furthermore a pendulum to convert the displacement into acceleration. A prototype of optical fiber accelerometer system has been successfully developed that consists of a sensor head, a control unit and a signal processing unit. The building model is also designed as a 4-story building with a rectangular shape of $200{\times}300$ mm of edges. Each floor is connected to the next ones by 6 steel columns which are threaded rods. Basically, a random vibration test of the building model is done with a shaker and all of acceleration data is successfully measured at the assigned points by the optical fiber accelerometer. The experiments are repeated in the undamaged state and the damaged state. The comparison of dynamic parameters including the natural frequencies and the eigenvectors is successfully carried out. Finally, the optical fiber accelerometer is proven to be prospective to evaluate dynamic characteristics of a building structure for the damage assessment.

SVDD를 활용한 상업용 건물에너지 소비패턴의 이상현상 감지 (Anomaly Detection and Diagnostics (ADD) Based on Support Vector Data Description (SVDD) for Energy Consumption in Commercial Building)

  • 채영태
    • 한국건축친환경설비학회 논문집
    • /
    • 제12권6호
    • /
    • pp.579-590
    • /
    • 2018
  • Anomaly detection on building energy consumption has been regarded as an effective tool to reduce energy saving on building operation and maintenance. However, it requires energy model and FDD expert for quantitative model approach or large amount of training data for qualitative/history data approach. Both method needs additional time and labors. This study propose a machine learning and data science approach to define faulty conditions on hourly building energy consumption with reducing data amount and input requirement. It suggests an application of Support Vector Data Description (SVDD) method on training normal condition of hourly building energy consumption incorporated with hourly outdoor air temperature and time integer in a week, 168 data points and identifying hourly abnormal condition in the next day. The result shows the developed model has a better performance when the ${\nu}$ (probability of error in the training set) is 0.05 and ${\gamma}$ (radius of hyper plane) 0.2. The model accuracy to identify anomaly operation ranges from 70% (10% increase anomaly) to 95% (20% decrease anomaly) for daily total (24 hours) and from 80% (10% decrease anomaly) to 10%(15% increase anomaly) for occupied hours, respectively.

Development of wind tunnel test model of mid-rise base-isolated building

  • Ohkuma, Takeshi;Yasui, Hachinori;Marukawa, Hisao
    • Wind and Structures
    • /
    • 제7권3호
    • /
    • pp.203-214
    • /
    • 2004
  • This paper describes a method for developing a multi-degree-of freedom aero-elasto-plastic model of a base-isolated mid-rise building. The horizontal stiffness of isolators is modeled by several tension springs and the vertical support is performed by air pressure from a compressor. A lead damper and a steel damper are modeled by a U-shaped lead line and an aluminum line. With this model, the frequency ratio of torsional vibration to sway vibration, and plastic displacements of isolation materials can be changed easily when needed. The results of isolation material tests and free vibration tests show that this model provides the object performance. The peak displacement factors are about 4.5 regardless of wind speed in wind tunnel tests, but their gust response factor decreases with increment of wind speed.

수치풍동 기법을 이용한 정사각형 건물 주위의 풍압계수에 관한 연구 (A NUMERICAL SIMULATION OF THE PRESSURE COEFFICIENT AROUND A CUBIC BUILDING MODEL)

  • 여재현;허남건;원찬식;김사량;최창근
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.162-166
    • /
    • 2007
  • In the present study, the pressure coefficient of a cubic building model is numerically simulated. Three turbulence models of standard ${\kappa}-{\varepsilon}$, RNG ${\kappa}-{\varepsilon}$ and LES are adopted and the results are compared with the available experimental data. From the results, it has been found that RNG ${\kappa}-{\varepsilon}$ turbulence model and LES turbulence model were shown to predict fairly well the experimental pressure coefficient. In contrast, the results of the standard ${\kappa}-{\varepsilon}$ turbulence model showed large discrepancies in pressure coefficient on the side and top surfaces of the cubic building, which limits the applicability of the standard ${\kappa}-{\varepsilon}$ turbulence model on wind engineering.

  • PDF

ENHANCEMENT OF AVAILABILITY OF 4D SIMULATION BASED ON BUILDING INFORMATION MODEL TECHNOLOGY

  • Jong Jin Park;Eon Yong Kim;Hyun Cho;Han Jong Jun
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.579-586
    • /
    • 2009
  • 4D simulation integrates the 3 dimensional model of a building with the construction schedule, and it leads to the possibility of virtually checking the construction process and the building itself in advance. However, the existing problem of 4D simulation is the difference between the demands of architects, engineers, and construction site workers in 4D simulation. This study suggests the possible way to enhance the availability of 4D simulation, considering more the practical demands from the construction site. In order to conduct this study, we build a 3D BIM model of a business-residential complex and link the model with the pre-defined construction schedule in order to make a 4D simulation. This study concludes with the optimized 4D simulation methodology based on BIM model considering the demands in perspective of the construction site. It would contribute to the harmonic collaboration among architects, engineers, and labors in the construction site when using 4D simulation based on BIM model.

  • PDF

투광형 박막 BIPV 창호 적용에 따른 냉난방 및 조명 부하 저감에 관한 연구 (A Study on Analysis for Energy Demand of the Heating, Cooling and Lighting in Office Building with Transparent Thin-film a-Si BIPV Window)

  • 윤종호;안영섭;박장우;김빛나
    • KIEAE Journal
    • /
    • 제13권3호
    • /
    • pp.91-96
    • /
    • 2013
  • The purpose of this study was to analyze the annual energy demand including heating, cooling and lighting according to kind of windows with transparent thin-film a-Si Building Integrated Photovoltaic(a-Si BIPV) for office building. The analysis results of the annual energy demand indicated that the a-si BIPV window was reduced by 8.4% than the clear gazing window. The base model A was combinate with a-Si BIPV window area of 67% and clear window area of 33% among the total exterior area. The model B is to be applied with low-e clear glass instead of clear glass of the base model A. The model B was reduced to annual energy demand of 1% more than the model A. Therefore, By using a-si BIPV solar module, the cooling energy demand can be reduced by 53%(3.4MWh) and the heating energy demand can be increase by 58%(2.4MWh) than clear glazing window in office building. Also, Model C applied to the high efficient lighting device to the model B was reduced to annual energy demand of 14.4% more than the Model D applied to the high efficient lighting device to the model A. The Model E applied with daylight dimming control system to the Model C was reduced to annual energy demand of 5.9% more than Model C.

미국 흙건축 법규의 법제화 유형 및 규제내용 분석 (A Study on the Legislation Types and Prescriptions of American Earth Building Codes)

  • 김정규
    • KIEAE Journal
    • /
    • 제8권3호
    • /
    • pp.19-26
    • /
    • 2008
  • The purpose of this study is to analyze the legislation types and prescriptions of American earth building codes. The process of this study is as follows: (1) To understand the legislation background of American earth building codes, this study investigated the history and present state of earth building techniques which is used in USA. (2) To understand the legislation method and procedure of American earth building codes, this study investigated the legislation system of American building codes and the process of model building codes development and adoption. (3) To provide basic data for the legislation of Korean earth building codes or guidelines, this study analyzed American earth building codes about adobe, compressed earth block and rammed earth. The result of this study is as follows: (1) To meet need of a single coordinated set of national model building codes in the United States, the nation's three model code groups decided to form the International Code Council and the first edition of the International Building Code was published in 1997. In the International Building Code there are prescriptions on adobe construction. (2) There are three legislation types of earth building codes in USA. First is to use prescriptions of International Building Code on adobe construction. Second is that State governments establish and issue a separate document under its own title. The last is that local jurisdictions adopt International Building Code with amendments or additional rules. (3) On the base of analysis of American earth building codes, this study proposed the legislation process and direction of Korean earth building codes and guidelines.

공동주택 사용부문의 이산화탄소 배출량 추정모델 연구 (Estimation Model of the Carbon Dioxide Emission in the Apartment Housing During the Maintenance period)

  • 이강희;채창우
    • KIEAE Journal
    • /
    • 제8권4호
    • /
    • pp.19-27
    • /
    • 2008
  • The carbon dioxide is brought from the energy consumption and regarded as a criteria material to estimate the Global Warming Potential. Building shares about 30% in national energy consumption and affects to environment as much as the energy consumption. But there is not enough data to forecast the amount of the carbon dioxide during the maintenance stage. Various factors are related with the energy consumption and carbon dioxide emission such as the physical area, the building exterior area, the maintenance type and location. Among these factors, the building carbon-dioxide emission can be estimated by the overall building characteristics such as the maintenance area, the number of household, the heating type, etc., The physical amount such as the thickness of the insulation and window infiltration could explained the limited scope and might not be use to estimate the total carbon-dioxide emission energy because the each value could not include or represent the overall building. In this paper, it provided the estimation model of the carbon-dioxide emission, explained by the overall building characteristics. These factors are shown as the maintenance area, no. of household, the heating type, the volume of the building, the ratio of the window to wall area etc., For providing the estimation model of th carbon-dioxide emission, it conducted the corelation analysis to filter the variables and suggested the estimation model with the power model and multiple regression model. Most of the model have a good statistics and fitted in the curve line.