• Title/Summary/Keyword: Model based control system design

Search Result 1,474, Processing Time 0.033 seconds

H Sampled-Data Control of Takagi-Sugeno Fuzzy System (타카기-수게노 퍼지 시스템의 H 샘플치 제어)

  • Kim, Do Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1142-1146
    • /
    • 2014
  • This paper addresses on a $H_{\infty}$ sampled-data stabilization of a Takagi-Sugeno (T-S) fuzzy system. The sampled-data stabilization problem is formulated as a discrete-time stabilization one via a direct discrete-time design approach. It is shown that the sampled-data fuzzy control system is asymptotically stable whenever its exactly discretized model is asymptotically stable. Based on an exact discrete-time model, sufficient design conditions are derived in the format of linear matrix inequalities (LMIs). An example is provided to illustrate the effectiveness of the proposed methodology.

Design and Evaluation of ANFIS-based Classification Model (ANFIS 기반 분류모형의 설계 및 성능평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.151-165
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of its outstanding accuracy of control and forecasting area. We design a new classification model based on ANFIS and evaluate it in terms of classification accuracy. We identified ANFIS-based classification model has higher classification accuracy compared to existing classification model, C5.0 decision tree model by comparing their experimental results.

  • PDF

Observer Based Nonlinear State Feedback Control of PEM Fuel Cell Systems

  • Kim, Eung-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.891-897
    • /
    • 2012
  • In this paper, the observer based nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using the Lyapunov's stability analysis strategy.

An RTP Temperature Control System Based on LQG Design (LQG 설계에 의한 RTP 온도제어 시스템)

  • Song, Tae-Seung;Yoo, Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.500-505
    • /
    • 2000
  • This paper deals with wafer temperature uniformity control essential in rapid thermal processing (RTP). One of the important control objectives of RTP is to keep the temperature over the wafer surface as uniformly as possible. For this, a discrete time state equation around the operating point is first identified by using the subspace fitting method, and a multivariable LQG(Linear Quadratic Gaussian) controller is designed based on the identified model. Simulation and experimental results show improvement in temperature uniformity over the conventional PID method.

  • PDF

Robot Motion Regeneration based on Independent Arm Control System Design Method

  • Tran, Manh-Son;Han, Kyu-Il;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • In robot industries, the request to obtain a high efficiency and accurately controlled electric actuator has been growing. Nevertheless, the effectiveness of electric actuators is significantly affected by the presence of factors such as nonlinearity, uncertain disturbance and unknown dynamics. Therefore, it makes difficult to derive an exact mathematical model of the controlled system. In this paper, a new method for easily recognizing and regenerating robot motions used in small size industries such as painting and welding parts is proposed. Instead of modeling the entire dynamic motion of the robot system, this method is based on the procedure of modeling and controller design for every arm individually. The proposed method does not require complex model and control system such that it gives easy working process to the small size industries. Based on this fact, in this research, the model and PID controller for every arm of the 3 DOF robot system are obtained separately. Some experimental results are implemented to validate the effectiveness of the proposed method.

Speed Control of a Wind Turbine System Based on Pitch Control (피치제어형 풍력발전시스템의 속도제어)

  • Lim, Jong-Hwan;Huh, Jong-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.109-116
    • /
    • 2001
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is a nonlinear function of wind speed, angular velocity, and pitch angle of the blade. The design of the controller, in general, is performed by linearizing the torque in the vicinity of the operating point assuming the angular velocity of the blade is constant. For speed control, however the angular velocity is on longer a constant, so that linearization of the torque in terms of wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the nonlinear torque model of the blade. This paper also suggests a method of designing a hydraulic control system for changing the pitch angle of the blade.

  • PDF

$H_\infty$ Control Apprach to a Magnetic Levitation System with Two Poles on $j_\omega$-Axis

  • Qi, Run-De;Tsuji, Teruo;Oguro, Ryuichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.339-344
    • /
    • 1993
  • An H$_{\infty}$ control system design for a magnetic levitation system is presented. In the control system design, we consider the influence of both disturbances and uncertainties in the model. The main disturbances stem from the position sensors.The uncertainties are divided into electromagnetic and mechanical ones: the former are due to the gain change in the current amplifier, the influence of leakage flux and modelling error in the magnetic circuit and the latter are due to the changes of the mass and the moments of inertia of the vehicle. Therefore, the designed controller is indispensable to guarantee the robustness of this system for both stability and performance. The controller design is based on the standard H$_{\infty}$ optimal control problem. As the novel features in this paper :(1) there are two poles on j.omega.-axis in the control model;(2) an integrator is included in the controller so that equivalently there are three poles on j.omega.-axis in the model. Finally, several experiments and simulations are carried out to verify the high performance and robustness of the designed control system.m.

  • PDF

Design of reference model for model reference sliding model control (모델 기준 슬라이딩 모드 제어기의 기준 모델 설계)

  • Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.4
    • /
    • pp.297-306
    • /
    • 2007
  • Model reference control is control method such that overall response of a plant plus controller approaches that of a given reference model. The reference model provides desired trajectory the plant should follow. There are many kinds of control methods in MRC. However, this paper focuses on Model Reference Sliding Mode Control. The plant of these controls is an uncertain and linear system varying in time, of second order, and with SISO. In this paper, a design scheme of reference model is proposed for MRSMC. The scheme determines reference model based on the information on bounded control inputs, reference inputs and system parameters. It is used to choose a Fixed Reference Model in the process of controller design, to update Variable Reference Model when stepwise reference inputs change and to update Instant Reference Model at every sampling time. The simulation results show that the proposed method yields better control performance than the conventional MRC subject to the stepwise reference input when applied to the position control system for motor system.

  • PDF

A Study on Architecting Method of a Welding Robot Using Model-Based System Design Method (모델기반 시스템 설계 방법을 이용한 용접로봇의 상부아키텍쳐 정의에 관한 연구)

  • Park Young-Won;Kim Jin-Ill
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.152-159
    • /
    • 2005
  • This paper describes the application of a model-based system design method critical to complex intelligent systems, PSARE, to a welding robot development to define its top level architecture. The PSARE model consists of requirement model which describes the core processes(function) of the system, enhanced requirement model which adds technology specific processes to requirement model and allocates them to architecture model, and architecture model which describes the structure and interfaces and flows of the modules of the system. This paper focuses on the detailed procedure and method rather than the detailed domain model of the welding robot. In this study, only the top level architecture of a welding robot was defined using the PSARE method. However, the method can be repeatedly applied to the lower level architecture of the robot until the process which the robot should perform can be clearly defined. The enhanced data flow diagram in this model separates technology independent processes and technology specific processes. This approach will provide a useful base not only for improvement of a class of welding robots but also for development of increasingly complex intelligent real-time systems.

SYNTHESIS OF DISCRETE TIME FLIGHT CONTROL SYSTEM USING NONLINEAR MODEL MATCHING

  • Aoi, Kazunari;Osa, Yasuhiro;Uchikado, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.460-460
    • /
    • 2000
  • Until now various model matching systems have been proposed for linear system, but very little has been done for nonlinear system In this paper, a design method of discrete time flight control system using nonlinear model matching is proposed. This method is based on Hirschorn's algorithm and facilitates easy determination of the control law using the relationship, between the output and the input, which is obtained by the time shift of the output. Also as a result, this method is the extension of the linear model matching control system proposed by Wolovich, in which the control law is obtained by left-multiplying the output by the interactor matrix. At the end of paper, the proposed control system is applied to CCV flight control system of an aircraft and the feasibility of the proposed approach is shown by the numerical simulations.

  • PDF