• 제목/요약/키워드: Model and Solver Integration

검색결과 31건 처리시간 0.03초

의사결정지원시스템에서 직관적이고 사용자 친숙한 모델 해결을 위한 모델과 솔버의 유연한 통합에 대한 연구 (Flexible Integration of Models and Solvers for Intuitive and User-Friendly Model-Solution in Decision Support Systems)

  • 이근우;허순영
    • 한국경영과학회지
    • /
    • 제30권1호
    • /
    • pp.75-94
    • /
    • 2005
  • Research in the decision sciences has continued to develop a variety of mathematical models as well as software tools supporting corporate decision-making. Yet. in spite of their potential usefulness, the models are little used in real-world decision making since the model solution processes are too complex for ordinary users to get accustomed. This paper proposes an intelligent and flexible model-solver integration framework that enables the user to solve decision problems using multiple models and solvers without having precise knowledge of the model-solution processes. Specifically, for intuitive model-solution, the framework enables a decision support system to suggest the compatible solvers of a model autonomously without direct user intervention and to solve the model by matching the model and solver parameters intelligently without any serious conflicts. Thus, the framework would improve the productivity of institutional model solving tasks by relieving the user from the burden of leaning model and solver semantics requiring considerable time and efforts.

Assessment of Rotor Hover Performance Using a Node-based Flow Solver

  • Jung, Mun-Seung;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional viscous flow solver has been developed for the prediction of the aerodynamic performance of hovering helicopter rotor blades using unstructured hybrid meshes. The flow solver utilized a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart- Allmaras one-equation turbulence model. Calculations were performed at three operating conditions with varying tip Mach number and collective pitch setting for the Caradonna-Tung rotor in hover. Additional computations are made for the UH-60A rotor in hover. Reasonable agreements were obtained between the present results and the experiment in both blade loading and overall rotor performance. It was demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

한국형 기동헬기 블레이드의 제자리 비행 공력 해석 (Aerodynamic Calculations in Hover of KUH Rotor Blade)

  • 강희정;김승호;정문승;이희동;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.25-28
    • /
    • 2008
  • An aerodynamic calculation in hover of KUH main rotor blade is performed using a three-dimensional unstructured hybrid mesh viscous flow solver. The flow solver utilizes a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart-Allmaras one-equation turbulence model. A solution-adaptive mesh refinement technique is used for efficient capturing of the tip vortex. Calculations are performed at several operating conditions with varying collective pitch setting for KUH main rotor blade in hover. Good agreements are obtained between the present and other results using HOST and CAMRAD II in overall rotor performance. It is demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

  • PDF

가스터빈 열 회수 증기 발생기의 난류연소 해석과 배기가스 예측 및 검증 (Numerical Analysis of Turbulent Combustion and Emissions in an HRSG System)

  • 장지훈;한가람;박호영;이욱륜;허강열
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.103-111
    • /
    • 2019
  • The combined cycle plant is an integration of gas turbine and steam turbine, combining the advantages of both cycles. It recovers the heat energy from gas turbine exhaust to use it to generate steam. The heat recovery steam generator plays a crucial role in combined cycle plants, providing the link between the gas turbine and the steam turbine. Simulation of the performance of the HRSG is required to study its effect on the entire cycle and system. Computational fluid dynamics has potential to become a useful to validate the performance of the HRSG. In this study a solver has been implemented in the open source code, OpenFOAM, for combustion simulation in the heat recovery steam generator. The solver is based on the steady laminar flamelet model to simulate detailed chemical reaction mechanism. Thereafter, the solver is used for simulation of HRSG system. Three cases with varying fuel injections and gas turbine exhaust gas flow rates were simulated and the results were compared with measurements at the system outlet. Predicted temperature and emissions and those from measurements showed the same trend and in quantitative agreement.

사항중인 선체 주위의 점성유동 계산 및 조종유체력에 선미형상이 미치는 영향 (Computation of Viscous Flows around a Ship with a Drift Angle and the Effects of Stern Hull Form on the Hydrodynamic Forces)

  • 김선영;김연규
    • 대한조선학회논문집
    • /
    • 제38권3호
    • /
    • pp.1-13
    • /
    • 2001
  • 사항상태의 선박 주위의 점성유동 계산을 위하여 RANS 방정식에 대한 수치계산법을 개발하였다. 수치계산법은 이산화방법으로 유한체적법에 기초하여, 비점성 대류항에 대하여는 3차 정도의 flux-difference splitting 방법을 사용하고 시간 적분은 Euler 음해법을 사용하였다. 난류모형으로는 Spalart-Allmaras one-equation 모형을 사용하였다. 개발된 수치계산법을 이용하여 선수형상은 같으나 선미형상이 다른 두 VLCC 선형에 대한 조종유체력 및 유동 특성을 계산하고 이를 실험결과와 함께 비교하고 살펴보았다. 계산결과는 구속모형시험과 국부유동계측으로부터 얻은 유체력 및 유동을 잘 예측하고 있을 뿐 아니라 선미형상 차이에서 나타나는 유체력 및 유동특성의 차이도 잘 보여주었다.

  • PDF

TIME STEPWISE LOCAL VOLATILITY

  • Bae, Hyeong-Ohk;Lim, Hyuncheul
    • 대한수학회보
    • /
    • 제59권2호
    • /
    • pp.507-528
    • /
    • 2022
  • We propose a path integral method to construct a time stepwise local volatility for the stock index market under Dupire's model. Our method is focused on the pricing with the Monte Carlo Method (MCM). We solve the problem of randomness of MCM by applying numerical integration. We reconstruct this task as a matrix equation. Our method provides the analytic Jacobian and Hessian required by the nonlinear optimization solver, resulting in stable and fast calculations.

Active Distribution Network Expansion Planning Considering Distributed Generation Integration and Network Reconfiguration

  • Xing, Haijun;Hong, Shaoyun;Sun, Xin
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.540-549
    • /
    • 2018
  • This paper proposes the method of active distribution network expansion planning considering distributed generation integration and distribution network reconfiguration. The distribution network reconfiguration is taken as the expansion planning alternative with zero investment cost of the branches. During the process of the reconfiguration in expansion planning, all the branches are taken as the alternative branches. The objective is to minimize the total costs of the distribution network in the planning period. The expansion alternatives such as active management, new lines, new substations, substation expansion and Distributed Generation (DG) installation are considered. Distribution network reconfiguration is a complex mixed-integer nonlinear programming problem, with integration of DGs and active managements, the active distribution network expansion planning considering distribution network reconfiguration becomes much more complex. This paper converts the dual-level expansion model to Second-Order Cone Programming (SOCP) model, which can be solved with commercial solver GUROBI. The proposed model and method are tested on the modified IEEE 33-bus system and Portugal 54-bus system.

Sensitivity Analysis for the Navier-Stokes Equations with Two-Equation Turbulence Models

  • 김창성;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.66-72
    • /
    • 2000
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. Both the direct differentiation code and the adjoint variable code adopt the same time integration scheme with the flow solver to efficiently solve the differentiated equations. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. Using two-equation turbulence models, it is observed that a usual assumption of constant turbulent eddy viscosity in adjoint methods may lead to seriously inaccurate results in highly turbulent flows.

  • PDF

삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발 (DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS)

  • 정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

분산 의사결정지원시스템 구축을 위한 웹서비스 기반 모델-솔버의 통합 설계 (Web Services-based Integration Design of Model-Solver for a Distributed Decision Support System)

  • 이근우;양근우
    • 정보화연구
    • /
    • 제9권1호
    • /
    • pp.43-55
    • /
    • 2012
  • 최근에는 정보시스템의 아웃소싱이 기업의 시스템 포트폴리오 관리의 핵심으로 일반화되었다. 아웃소싱된 의사결정지원시스템에서는 서로 다른 모델링 기법이나 시스템 플랫폼에 기반을 두어 개발된 특정모델을 제공하므로 경영 문제에 대한 의사결정을 해야 하는 의사결정자는 때로 해당 문제에 적합한 모델과 솔버를 선택하여 적용하는 과정에서 어려움을 느끼게 된다. 외부로부터 아웃소싱된 의사결정시스템 활용에 있어서 이와 같은 문제를 해결하고자 본 연구에서는 사용자가 해당 모델이나 솔버에 대한 충분한 지식이 없을 경우에도 적합한 모델과 솔버를 찾아 수행할 수 있도록 해 주는 의사결정지원시스템 아웃소싱 아키텍처를 제안한다. 특히 본 연구에서는 웹서비스 접근법을 기반으로 개별 모델과 솔버를 캡슐화하여 이종 모델과 솔버의 원활한 통합이 가능하도록 하였다.