• Title/Summary/Keyword: Model Update Method

검색결과 287건 처리시간 0.033초

XML 문서의 다양한 구조 검색을 위한 효율적인 동적 색인 모델 (An Efficient Dynamic Indexing Model for Various Structure Retrievals of XML Documents)

  • 신승호;손충범;강형일;유재수
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권1호
    • /
    • pp.48-60
    • /
    • 2004
  • 정보 표현의 기본 단위인 엘리먼트로 구성되는 XML 문서 내에서 동적으로 구조 변경이 이루어진다. 이때 XML 문서의 구조변경은 빠른 검색을 위해 기존의 색인 구조 정보의 변경 없이 효율적으로 처리되어야 한다. 이를 위해 본 논문에서는 XML 문서의 구조 변경 시 기존의 색인 구조에 효율적으로 수용될 수 있는 동적 색인 모델을 제안한다. 제안하는 동적 색인 모델은 다양한 구조 검색을 지원하기 위한 구조 정보 표현 방법과 효율적인 구조 검색을 지원하기 위한 동적 색인 구조로 구성된다. 제안하는 색인 기법이 기존의 동적 색인을 지원하는 기법보다 내용 색인, 구조 색인, 애트리뷰트 색인 측면에서 우수함을 성능 평가를 통해 보인다.

Advanced Process Control of the Critical Dimension in Photolithography

  • Wu, Chien-Feng;Hung, Chih-Ming;Chen, Juhn-Horng;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.12-18
    • /
    • 2008
  • This paper describes two run-to-run controllers, a nonlinear multiple exponential-weight moving-average (NMEWMA) controller and a dynamic model-tuning minimum-variance (DMTMV) controller, for photolithography processes. The relationships between the input recipes (exposure dose and focus) and output variables (critical dimensions) were formed using an experimental design method, and the photolithography process model was built using a multiple regression analysis. Both the NMEWMA and DMTMV controllers could update the process model and obtain the optimal recipes for the next run. Quantified improvements were obtained from simulations and real photolithography processes.

Content-Adaptive Model Update of Convolutional Neural Networks for Super-Resolution

  • 기세환;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.234-236
    • /
    • 2020
  • Content-adaptive training and transmission of the model parameters of neural networks can boost up the SR performance with higher restoration fidelity. In this case, efficient transmission of neural network parameters are essentially needed. Thus, we propose a novel method of compressing the network model parameters based on the training of network model parameters in the sense that the residues of filter parameters and content loss are jointly minimized. So, the residues of filter parameters are only transmitted to receiver sides for different temporal portions of video under consideration. This is advantage for image restoration applications with receivers (user terminals) of low complexity. In this case, the user terminals are assumed to have a limited computation and storage resource.

  • PDF

Probabilistic condition assessment of structures by multiple FE model identification considering measured data uncertainty

  • Kim, Hyun-Joong;Koh, Hyun-Moo
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.751-767
    • /
    • 2015
  • A new procedure is proposed for assessing probabilistic condition of structures considering effect of measured data uncertainty. In this procedure, multiple Finite Element (FE) models are identified by using weighting vectors that represent the uncertainty conditions of measured data. The distribution of structural parameters is analysed using a Principal Component Analysis (PCA) in relation to uncertainty conditions, and the identified models are classified into groups according to their similarity by using a K-means method. The condition of a structure is then assessed probabilistically using FE models in the classified groups, each of which represents specific uncertainty condition of measured data. Yeondae bridge, a steel-box girder expressway bridge in Korea, is used as an illustrative example. Probabilistic condition of the bridge is evaluated by the distribution of load rating factors obtained using multiple FE models. The numerical example shows that the proposed method can quantify uncertainty of measured data and subsequently evaluate efficiently the probabilistic condition of bridges.

연합학습을 위한 패턴 및 그룹 기반 효율적인 분산 합의 최적화 (Efficient distributed consensus optimization based on patterns and groups for federated learning)

  • 강승주;천지영;노건태;정익래
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.73-85
    • /
    • 2022
  • 인공지능으로 자동화와 연결성이 극대화되는 4차 산업혁명 시대를 맞이하여 모델의 업데이트를 위한 데이터 수집과 활용의 중요성이 점차 높아지고 있다. 인공지능 기술을 사용하여 모델을 생성하기 위해서는 일반적으로 데이터를 한곳에 모아야 업데이트할 수 있으나, 이런 경우 사용자의 개인정보를 침해할 수 있다. 본 논문에서는 분산 저장된 데이터를 직접 공유하지 않으면서 서로 협력하여 모델을 업데이트할 수 있는 분산형 기계학습 방법인 연합학습을 소개하며, 기존의 서버 없이 참여자들 간의 분산 합의 최적화를 이루는 연구를 소개한다. 또한, Kirkman Triple System을 기반으로 한 패턴 및 그룹을 생성하는 알고리즘을 이용하며, 병렬적인 업데이트 및 통신을 하는 패턴 및 그룹 기반 분산 합의 최적화 알고리즘을 제안한다. 이러한 알고리즘은 기존의 분산 합의 최적화 알고리즘 이상의 프라이버시를 보장하며, 모델이 수렴할 때까지의 통신시간을 감소시킨다.

Modified Particle Filtering for Unstable Handheld Camera-Based Object Tracking

  • Lee, Seungwon;Hayes, Monson H.;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권2호
    • /
    • pp.78-87
    • /
    • 2012
  • In this paper, we address the tracking problem caused by camera motion and rolling shutter effects associated with CMOS sensors in consumer handheld cameras, such as mobile cameras, digital cameras, and digital camcorders. A modified particle filtering method is proposed for simultaneously tracking objects and compensating for the effects of camera motion. The proposed method uses an elastic registration algorithm (ER) that considers the global affine motion as well as the brightness and contrast between images, assuming that camera motion results in an affine transform of the image between two successive frames. By assuming that the camera motion is modeled globally by an affine transform, only the global affine model instead of the local model was considered. Only the brightness parameter was used in intensity variation. The contrast parameters used in the original ER algorithm were ignored because the change in illumination is small enough between temporally adjacent frames. The proposed particle filtering consists of the following four steps: (i) prediction step, (ii) compensating prediction state error based on camera motion estimation, (iii) update step and (iv) re-sampling step. A larger number of particles are needed when camera motion generates a prediction state error of an object at the prediction step. The proposed method robustly tracks the object of interest by compensating for the prediction state error using the affine motion model estimated from ER. Experimental results show that the proposed method outperforms the conventional particle filter, and can track moving objects robustly in consumer handheld imaging devices.

  • PDF

Anti-sparse representation for structural model updating using l norm regularization

  • Luo, Ziwei;Yu, Ling;Liu, Huanlin;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.477-485
    • /
    • 2020
  • Finite element (FE) model based structural damage detection (SDD) methods play vital roles in effectively locating and quantifying structural damages. Among these methods, structural model updating should be conducted before SDD to obtain benchmark models of real structures. However, the characteristics of updating parameters are not reasonably considered in existing studies. Inspired by the l norm regularization, a novel anti-sparse representation method is proposed for structural model updating in this study. Based on sensitivity analysis, both frequencies and mode shapes are used to define an objective function at first. Then, by adding l norm penalty, an optimization problem is established for structural model updating. As a result, the optimization problem can be solved by the fast iterative shrinkage thresholding algorithm (FISTA). Moreover, comparative studies with classical regularization strategy, i.e. the l2 norm regularization method, are conducted as well. To intuitively illustrate the effectiveness of the proposed method, a 2-DOF spring-mass model is taken as an example in numerical simulations. The updating results show that the proposed method has a good robustness to measurement noises. Finally, to further verify the applicability of the proposed method, a six-storey aluminum alloy frame is designed and fabricated in laboratory. The added mass on each storey is taken as updating parameter. The updating results provide a good agreement with the true values, which indicates that the proposed method can effectively update the model parameters with a high accuracy.

Modified analytical AI evolution of composite structures with algorithmic optimization of performance thresholds

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • 제53권1호
    • /
    • pp.103-114
    • /
    • 2024
  • This study proposes a new hybrid approach that utilizes post-earthquake survey data and numerical analysis results from an evolving finite element routing model to capture vulnerability processes. In order to achieve cost-effective evaluation and optimization, this study introduced an online data evolution data platform. The proposed method consists of four stages: 1) development of diagnostic sensitivity curve; 2) determination of probability distribution parameters of throughput threshold through optimization; 3) update of distribution parameters using smart evolution method; 4) derivation of updated diffusion parameters. Produce a blending curve. The analytical curves were initially obtained based on a finite element model used to represent a similar RC building with an estimated (previous) capacity height in the damaged area. The previous data are updated based on the estimated empirical failure probabilities from the post-earthquake survey data, and the mixed sensitivity curve is constructed using the update (subsequent) that best describes the empirical failure probabilities. The results show that the earthquake rupture estimate is close to the empirical rupture probability and corresponds very accurately to the real engineering online practical analysis. The objectives of this paper are to obtain adequate, safe and affordable housing and basic services, promote inclusive and sustainable urbanization and participation, implement sustainable and disaster-resilient buildings, sustainable human settlement planning and management. Therefore, with the continuous development of artificial intelligence and management strategy, this goal is expected to be achieved in the near future.

컨볼루션 신경망의 특징맵을 사용한 객체 추적 (Object Tracking using Feature Map from Convolutional Neural Network)

  • 임수창;김도연
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.126-133
    • /
    • 2017
  • The conventional hand-crafted features used to track objects have limitations in object representation. Convolutional neural networks, which show good performance results in various areas of computer vision, are emerging as new ways to break through the limitations of feature extraction. CNN extracts the features of the image through layers of multiple layers, and learns the kernel used for feature extraction by itself. In this paper, we use the feature map extracted from the convolution layer of the convolution neural network to create an outline model of the object and use it for tracking. We propose a method to adaptively update the outline model to cope with various environment change factors affecting the tracking performance. The proposed algorithm evaluated the validity test based on the 11 environmental change attributes of the CVPR2013 tracking benchmark and showed excellent results in six attributes.

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF