• Title/Summary/Keyword: Model Tuning

Search Result 773, Processing Time 0.037 seconds

PID Tuning Algorithm Using Reduction Model (축소 모델을 이용한 PID 동조 알고리즘)

  • Ryu, Young-Guk;Cho, Joon-Ho;Choi, Jung-Nae;Hwang, Hyung-Su
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2648-2650
    • /
    • 2000
  • The PID tuning algorithm which can be applied generally to processes with varies dynamic characteristics is proposed by Wang[7]. However, it can be applied well to process model without zeros and with $\angle$G(jw)=-${\pi}$/2 and -${\pi}$ point in Nyquist curve, but it gives unsatisfactory tuning performance for processes with zeros and without $\angle$G(jW)=-${\pi}$/2 and -${\pi}$ in Nyquist curve. In this paper, the method which improve it using Pade reduction method is proposed. Satisfactory responses can be expected for processes with various dynamics, including those with low or high order, small or large dead time, monotonic or oscillatory responses. Simulation examples are given to show the effectiveness and flexibility of the controller in handling processes of different characteristics.

  • PDF

Improved 3-DOF Attitude Control of a Model Helicopter using Fuzzy-Tuning PID Controller (퍼지 동조 PID 제어기를 이용한 모형 헬리콥터의 개선된 3자유도 자세제어)

  • Park, Mun-Soo;Park, Duck-Gee;Jung, Won-Jae;Kim, Byung-Do;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2470-2472
    • /
    • 2001
  • This paper describes the application of a fuzzy-tuning PID controller to a 3-DOF attitude control of a small model helicopter in hover for the compensation of coupling effects between each axis and system uncertainties due to the variation of engine RPM. A Low-level PID controller is designed by Ziegler-Nichols method and its gains are tuned by a high-level fuzzy system based on error states and its time derivatives. The experimental results show that the attitude control performance of fuzzy-tuning PID controller is improved comparing with that of a Ziegler-Nichols PID controller and fuzzy controller.

  • PDF

Control of Helicopter Training Simulator by Self Tuning Control Method

  • Kim, Sang-Bong;Ahn, Hwi-Ung;Lee, Gun-You;Park, Soon-Sil;Oh, Sea-June
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.77.6-77
    • /
    • 2001
  • R/C helicopter has been used to several fields of military affairs, investigation, searching and toys because it has small size, hovering and vertical take-off characteristics etc. Therefore it needs more realizable control method. The paper introduces simulation and experimental results for control of a helicopter training simulator by self tuning control method. It is assumed that the helicopter is operated at the state of hovering motion and the model is induced. The self tuning control method incorporates the concepts of the well known internal model principle and annihilator polynomial for reference input and disturbance. The controller design is separated into two cases that the plant parameters are known or not. To realize ...

  • PDF

A Robust Speed Control System Design of Induction Motors Using Self-Tuning Control Method (자기동조법에 의한 유전전동기의 강인한 속도 제어계 설계)

  • Kim, Sang Bong;Jeon, Bong Hwan;Jeong, Seok Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.168-175
    • /
    • 1995
  • A robust speed control algorithm under disturbances and reference change is developed using the self tuning control method in order to control induction motors. The method incorporates the concepts of the well known internal model principle and the annihilator polynomial. The effectiveness of the method is evaluated through the speed control experimental results of an induction motor for refernce change and arbitrary distrbance.

  • PDF

A Numerical Study on Quarter-Wave Resonator Tuning for Suppression of Combustion Instability in a Model Combustion Chamber (모형 연소실에서 연소 불안정 억제를 위한 1/4파장 공명기의 동조 방법에 관한 수치적 연구)

  • Park, Ju-Hyun;Park, I-Sun;Sohn, Chae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • Acoustic tuning of quarter-wave resonator is investigated numerically to suppress combustion instability in liquid rocket engines. A model combustion chamber is adopted. First, basic acoustic characteristics are examined and acoustic damping is pursued by quarter-wave resonators. Next, for frequency tuning of the resonators, thermodynamic properties inside the acoustic resonators are estimated based on the numerical data. Maximum damping capacity is obtained when the resonators are designed to have the optimum length calculated with the properties. But, damping capacity induced by the resonators with the same length is comparable with it.

Automatic PID Controller Parameter Analyzer

  • Pannil, Pittaya;Julsereewong, Prasit;Ukakimaparn, Prapart;Tirasesth, Kitti
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.288-291
    • /
    • 1999
  • The PID (Proportional-Integral-Derivative) controller is widely used in the industries for more than fifty years with the well known Ziegler-Nichols tuning method and others varieties. However, most of the PID controller being used in the real practice still require trial and error adjustment for each process after the tuning method is done, which is consuming of time and needs the operator experiences to obtain the best results for the controller parameter. In order to reduce the inconvenience in the controller tuning, this paper presents a design of an automatic PID controller parameter analyzer being used as a support instrument in the industrial process control. This analyzer is designed based on the tuning formula of Dahlin to synthesize the PID controller parameter. Using this analyzer, the time to be spent in the trial and error procedures and its complexity can be neglected. Experimental results using PID controller parameter synthesized from this analyzer to the liquid level control plant model and the fluid flow control plant model show that the responses of the controlled systems can be efficiently controlled without any difficulty in mathemathical computation.

  • PDF

Optimal Multicast Algorithm and Architecture-Dependent Tuning on the Parameterized Communication Model (변수화된 통신모델에서의 최적의 멀티캐스트 알고리즘 및 컴퓨터 구조에 따른 튜닝)

  • Lee, Ju-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2332-2342
    • /
    • 1999
  • Multicast is an important system-level one-to-many collective communication service. A key issue in designing software multicast algorithms is to consider the trade-off between performance and portability. Based on the LogP model, the proposed parameterized communication model can more accurately characterize the communication network of parallel platforms, Under the parameterized model, we propose an efficient architecture-independent method. OPT-tree algorithm, to construct optimal multicast trees and also investigate architecture-dependent tuning on performance of the multicast algorithm to achieve the truly optimal performance when implemented in real networks. Specifically, OPT-mesh which is the optimized version of the parameterized multicast algorithm for wormhole-switched mesh networks is developed and compared with two other well-known network-dependent algorithms.

  • PDF

Reference Model Feedback Control and Stability Evaluation for Control System with Hard Non-linearities (견비선형을 갖는 제어시스템에 대한 기준모델 피드백제어 및 안정성평가)

  • Jung, Yu-Chul;Lee, Gun-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.72-78
    • /
    • 2006
  • The paper proposes reference model error feedback control scheme for motion control system with hard non-linear components as like saturation and dead-zone in plant input part. Additionally, the plant has the system uncertainty effected by plant model parameter deviation and disturbance. The control algorithm uses the reference model to apply additional feedback loop with the error between reference model output and actual output effected by disturbance and non-linear components. And the stability evaluation based on Popov stability and controller design method are formulated to be performed. The effectiveness of the proposed scheme is examined by simulations. The results are proven by reasonable performances following reference model responses with good disturbance rejection performance without over-tuning of controller.

Auto-tuning of PID/PIDA Controllers based on Step-response (스텝응답에 기반한 PID/PIDA 제어기의 자동동조)

  • Ahn, Kyung-Pil;Lee, Jun-Sung;Lim, Jae-Sik;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.974-981
    • /
    • 2009
  • In this paper, a method of auto-tuning of PID (Proportional-Integral-Derivative) and PIDA (Proportional-Integral-Derivative-Acceleration) controllers is proposed that can be applied to a time-delayed second order model. The proposed identification method is based on step responses, but it can be easily automated rising digital controller unlike the existing graphical identification methods. We provide a ways to yield parameter identifications which is independent to initial values of the plants. The tuning rule is based on the pole-placement strategy and is formulated so that it can be implemented using a digital controller with ease.

PID Controller Tuning Rules for Integrating Processes with Time Delay (시간지연을 갖는 적분시스템용 PID 제어기의 동조규칙)

  • Lee, Yun-Hyung;So, Myung-Ok;Hwang, Seung-Wook;Ahn, Jong-Kap;Kim, Min-Jung;Jin, Gang-Gyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.753-759
    • /
    • 2006
  • Integrating processes are frequently encountered in process industries. In this paper, new tuning formulae of the PID controllers for set-point tracking and load disturbance rejection are presented for integrating processes involving time delay. First, the controller parameter sets are tuned using a real-coded genetic algorithm (RCGA) such that performance criterion(IAE, ISE or ITSE) is minimized. Then, tuning rules are addressed using tuned PID parameter sets. tuning model and another RCGA. The performances of the proposed rules are tested on two processes.