• Title/Summary/Keyword: Model Rocket

Search Result 411, Processing Time 0.024 seconds

Test Facility Improvement for Hot Firing Test of a 7-tonf Combustor in Sub-scale model (7톤급 연소기 축소형 모델 시험을 위한 설비 개량)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Kim, Hyeon-Jun;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.498-501
    • /
    • 2012
  • The Model Rocket Engine Test Facility has been improved to develop the Korea Space Launch Vehicle II(KSLV-II). The modified Model Rocket Engine Test Facility will be used to develop 7-tonf class liquid rocket engine combustor. The test result and test technique acquired from this facility will be used to develop the high performance liquid rocket engine combustor. This paper describes the modified Model Rocket Engine Test Facility for a Sub-scale model test of the 7-tonf class combustor.

  • PDF

A Study on Improvement of Performance of Sorbitol Model Rocket (솔비톨을 이용한 모델로켓의 성능향상에 대한 연구)

  • Park, Ju-Hyun;Kim, Tae-Su;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.419-422
    • /
    • 2006
  • Improvement of performance of sorbitol model rocket was studied. The rocket designed in this work was compared with the rocket manufactured previously with respect to the shape of body, grain of rocket motor, motor case and recovery system. From this comparative work, it is found that mass ratio is required to be increased and the rocket was designed under safety regulation.

  • PDF

Flamelet Modeling for Combustion Processes of Hybrid Rocket Engine (화염편 모델을 이용한 하이브리드 로켓의 연소과정 해석)

  • Lim, Jae-Bum;Kang, Sung-Mo;Kim, Yong-Mo;Yoon, Myung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.237-240
    • /
    • 2006
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. Accordingly, the recent research efforts are focused on the improvement of engine efficiency and regressionrate in the hybrid rocket engine. The present study has numerically investigated the combustion processes and the flame structure in the hybrid rocket engine. The turbulent combustion is represented by the flamelet model and Low Reynolds number $k-{\varepsilon}$turbulent model is employed to reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect. Numerical results suggest that the present approach is capable of realistically simulating the combustion characteristics of the hybrid rocket engines.

  • PDF

Analysis for Combustion Characteristics of Hybrid Rocket Motor (하이브리드 로켓의 연소특성 해석)

  • 김후중;김용모;윤명원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.61-67
    • /
    • 2001
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. The recent research efforts are focused on the improvement of volume limitation and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the eddy breakup model and Hiroyasu and Nagle and Strickland-Constable model are used for soot formation and soot oxidation. Radiative heat transfer is modeled by finite volume method. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number k-$\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes in the vortex hybrid rocket engine.

  • PDF

Flamelet Modeling for Combustion Processes of Hybrid Rocket Engine (화염편 모델을 이용한 하이브리드 로켓의 연소과정 해석)

  • Lim, Jae-Bum;Kim, Yong-Mo;Yoon, Myung-Won
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.245-248
    • /
    • 2006
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. Accordingly, the recent research efforts are focused on the improvement of engine efficiency and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the flamelet model and Low Reynolds number $k-{\varepsilon}$ turbulent model is employed to reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect. Based on numerical results, the detailed discussions have been made for the effects of oxygen injection methods and oxygen injection flow rate on flame structure and regression rate in the vortex hybrid rocket engines

  • PDF

A Study on the Influence of Helicopter Main Rotor Inflow Model upon Launched Rocket Trajectory and Safe Launch Envelope (헬리콥터 유입류 모델에 따른 발사된 로켓의 비행궤적 영향성 및 안전발사 기동영역 해석 연구)

  • Yang, Chang Deok;Jung, Dong Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.70-77
    • /
    • 2019
  • This study presents the numerical investigation of the trajectory of rocket launched from a helicopter. The nonlinear mathematical model of armed configuration of UH-60 helicopter was developed while Hydra 70 unguided rocket was modeled to simulate the rocket behavior. The effects of various inflow models on the launched rocket trajectory are obtained. Similarly, rocket launch simulation was performed to determine the unsafe flight maneuver condition where the rocket trajectory is critically close to the helicopter main rotor tip path plane.

Unguided Rocket Trajectory Analysis under Rotor Wake and External Wind (로터 후류와 외풍에 따른 무유도 로켓 궤적 변화 해석)

  • Kim, Hyeongseok;Chae, Sanghyun;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Downwash from helicopter rotor blades and external winds from various maneuvering make an unguided rocket change its trajectory and range. For the prediction of the trajectory and range, it is essential to consider the downwash effect. In this study, an algorithm was developed to calculate 6-Degree-Of-Freedom(6 DOF) forces and moments exerting on the rocket, and total flight trajectory of a 2.75-inch unguided rocket in a helicopter downwash flow field. Using Actuator Disk Model(ADM) analysis result, the algorithm could analyze the entire trajectory in various initial launch condition such as launch angle, launch velocity, and external wind. The algorithm that considered the interference between a fuselage and external winds could predict the trajectory change more precisely than inflow model analysis. Using the developed algorithm, the attitude and trajectory change mechanism by the downwash effect were investigated analyzing the effective angle of attack change and characteristics of pitching stability of the unguided rocket. Also, the trajectory and range changes were analyzed by considering the downwash effect with external winds. As a result, it was concluded that the key factors of the rocket range change were downwash area and magnitude which effect on the rocket, and the secondary factors were the dynamic pressure of the rocket and the interference between a fuselage and external winds. In tailwind case which was much influential on the range characteristics than other wind cases, the range of the rocket rose as increasing the tailwind velocity. However, there was a limit that the range of the rocket did not increase more than the specific tailwind velocity.

An Evaluation of Structural Characteristics and Integrity for Rocket Motor Case according to Dome Types (돔 형상에 따른 연소관의 구조 특성 및 안전성 평가)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Won-Hoon;Koo, Song-Hoe
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.257-262
    • /
    • 2009
  • Elastic-Plastic structural analysis was performed to evaluate structural characteristic and integrity for rocket motor case of solid propulsion system. The structural analyses were compared and evaluated using the simplified 2-D axisymmetric model and 3-D full model for rocket motor case with torispherical dome type. And pre-tension load for bolt model was considered in structural analysis. The results of displacement and stress for the simplified 2-D axisymmetric model and 3-D full model were in an good agreement with each other. Therefore, the simplified 2-D axisymmetric model for rocket motor case was recommended to verify quickly the structural integrity and save the modeling and calculating time in initial design stage. Also, the structural characteristic and integrity for rocket motor case according to 5 dome types was evaluated to select the optimal dome shape.

  • PDF

A Correction Method for Operating Mode Analysis of Gas Generator Cycle Liquid Propellant Rocket Engine (가스발생기 사이클 액체로켓엔진작동 모드 해석의 보정 방법)

  • Nam, Chang-Ho;Moon, Yoonwan;Park, Soon Young;Chung, Enhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.104-110
    • /
    • 2018
  • Operating mode analysis of a liquid propellant rocket engine(LRE) is a crucial tool through the development of an engine. The operating mode analysis of an engine based on a collection of the acceptance tests of components shows discrepancies when compared to the test results. We propose a correction method for performance parameters to develop an engine analysis model for the gas generator cycle of an LRE. In order to simulate engine behavior, the performance parameters for the analysis model are tuned based on the test results of the 75tf engine of KSLV-II.

A Literature Survey and Application of System Analysis of the Liquid Rocket Engine (액체로켓엔진 시스템 해석 문헌 고찰 및 응용)

  • Cho, Won-Kook;Park, Soon-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.328-331
    • /
    • 2008
  • A literature survey has been reported of the systems analysis on the liquid rocket engines. The analysis tools are mainly about the calculation of the rocket engine performance at the early days. However recent trend shows that researchers try to develop an integrated environment of distributed analysis tools for faster and cheaper analysis. This article presents the systems analysis results of the liquid rocket engine of gas generator cycle using the published mass estimating model. The specific impulse change for various thrust to weight ratio agrees qualitatively well with the published data.

  • PDF