• 제목/요약/키워드: Model Recognition

검색결과 3,440건 처리시간 0.029초

평균 예측 LMS 알고리즘을 이용한 반향 잡음에 강인한 HMM 학습 모델 (Echo Noise Robust HMM Learning Model using Average Estimator LMS Algorithm)

  • 안찬식;오상엽
    • 디지털융복합연구
    • /
    • 제10권10호
    • /
    • pp.277-282
    • /
    • 2012
  • 음성 인식 시스템은 다양하게 변화하는 환경 잡음에 빠르게 적응할 수 없어서 인식 성능을 저하시키는 요인이 된다. 본 논문에서는 평균 예측 LMS 알고리즘을 이용하여 반향 잡음에 강인하게 하는 방법으로 HMM 학습 모델을 구성하는 방법을 제안하였으며, 변화하는 반향 잡음에 적응하도록 HMM 학습 모델을 구성하여 인식 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 음성의 SNR은 평균 3.1dB이 향상되었고 인식률은 3.9% 향상되었다.

The development of food image detection and recognition model of Korean food for mobile dietary management

  • Park, Seon-Joo;Palvanov, Akmaljon;Lee, Chang-Ho;Jeong, Nanoom;Cho, Young-Im;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • 제13권6호
    • /
    • pp.521-528
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The aim of this study was to develop Korean food image detection and recognition model for use in mobile devices for accurate estimation of dietary intake. MATERIALS/METHODS: We collected food images by taking pictures or by searching web images and built an image dataset for use in training a complex recognition model for Korean food. Augmentation techniques were performed in order to increase the dataset size. The dataset for training contained more than 92,000 images categorized into 23 groups of Korean food. All images were down-sampled to a fixed resolution of $150{\times}150$ and then randomly divided into training and testing groups at a ratio of 3:1, resulting in 69,000 training images and 23,000 test images. We used a Deep Convolutional Neural Network (DCNN) for the complex recognition model and compared the results with those of other networks: AlexNet, GoogLeNet, Very Deep Convolutional Neural Network, VGG and ResNet, for large-scale image recognition. RESULTS: Our complex food recognition model, K-foodNet, had higher test accuracy (91.3%) and faster recognition time (0.4 ms) than those of the other networks. CONCLUSION: The results showed that K-foodNet achieved better performance in detecting and recognizing Korean food compared to other state-of-the-art models.

감마톤 특징 추출 음향 모델을 이용한 음성 인식 성능 향상 (Speech Recognition Performance Improvement using Gamma-tone Feature Extraction Acoustic Model)

  • 안찬식;최기호
    • 디지털융복합연구
    • /
    • 제11권7호
    • /
    • pp.209-214
    • /
    • 2013
  • 음성 인식 시스템에서는 인식 성능 향상을 위한 방법으로 인간의 청취 능력을 인식 시스템에 접목하였으며 잡음 환경에서 음성 신호와 잡음을 분리하여 원하는 음성 신호만을 선택할 수 있도록 구성되었다. 하지만 실용적 측면에서 음성 인식 시스템의 성능 저하 요인으로 인식 환경 변화에 따른 잡음으로 인한 음성 검출이 정확하지 못하여 일어나는 것과 학습 모델이 일치하지 않는 것을 들 수 있다. 따라서 본 논문에서는 음성 인식 향상을 위해 감마톤을 이용하여 특징을 추출하고 음향 모델을 이용한 학습 모델을 제안하였다. 제안한 방법은 청각 장면 분석을 이용한 특징을 추출을 통해 인간의 청각 인지 능력을 반영하였으며 인식을 위한 학습 모델 과정에서 음향 모델을 이용하여 인식 성능을 향상시켰다. 성능 평가를 위해 잡음 환경의 -10dB, -5dB 신호에서 잡음 제거를 수행하여 SNR을 측정한 결과 3.12dB, 2.04dB의 성능이 향상됨을 확인하였다.

원통 모델과 스테레오 카메라를 이용한 포즈 변화에 강인한 얼굴인식 (Pose-invariant Face Recognition using a Cylindrical Model and Stereo Camera)

  • 노진우;홍정화;고한석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권7호
    • /
    • pp.929-938
    • /
    • 2004
  • 본 논문에서는 원통모델과 스테레오 카메라를 이용하여 대상의 포즈 변화에 강인한 얼굴인식 방법을 제안한다. 입력으로 하나의 영상을 취할 수 있는 경우와 스테레오 영상을 취할 수 있는 경우의 두 가지로 나누어 다룬다. 단일 입력 영상인 경우 정면이 아닌 입력 영상에 대하여 원통 모델을 이용하여 좌우방향(yaw)으로 포즈를 보상하고, 스테레오 입력 영상인 경우 스테레오 기하학을 이용하여 예측된 상하방향(pitch) 포즈로 대상의 상하 변화까지 보상한다. 또한 스테레오 카메라를 통하여 동시에 두 개의 영상을 얻는다는 장점이 있기 때문에 결정 단계 융합(decision-level fusion) 방법을 이용하여 전체적인 인식률을 향상시킨다. 실험 결과, 좌우 포즈 변환을 통하여 인식률이 61.43%에서 94.76%로 향상되었음을 볼 수 있었고, 보다 복잡한 3차원 얼굴 모델과의 비교 결과 인식률이 양호함을 확인할 수 있었다. 또한 스테레오 카메라 시스템을 이용하여 얼굴이 위로 향한 영상일 경우 5.24%의 인식률을 향상시켰고, 결정 단계융합에 의해 추가로 3.34%의 인식률을 향상시킬 수 있었다.

Harmony Search 알고리즘 기반 HMM 구조 최적화에 의한 얼굴 정서 인식 시스템 개발 (Development of Facial Emotion Recognition System Based on Optimization of HMM Structure by using Harmony Search Algorithm)

  • 고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.395-400
    • /
    • 2011
  • 본 논문에서는 얼굴 표정에서 나타나는 동적인 정서상태 변화를 고려한 얼굴 영상 기반 정서 인식 연구를 제안한다. 본 연구는 얼굴 영상 기반 정서적 특징 검출 및 분석 단계와 정서 상태 분류/인식 단계로 구분할 수 있다. 세부 연구의 구성 중 첫 번째는 Facial Action Units (FAUs)과 결합한 Active Shape Model (ASM)을 이용하여 정서 특징 영역 검출 및 분석기법의 제안이며, 두 번째는 시간에 따른 정서 상태의 동적 변화를 고려한 정확한 인식을 위하여 Hidden Markov Model(HMM) 형태의 Dynamic Bayesian Network를 사용한 정서 상태 분류 및 인식기법의 제안이다. 또한, 최적의 정서적 상태 분류를 위한 HMM의 파라미터 학습 시 Harmony Search (HS) 알고리즘을 이용한 휴리스틱 최적화 과정을 적용하였으며, 이를 통하여 동적 얼굴 영상 변화를 기반으로 하는 정서 상태 인식 시스템을 구성하고 그 성능의 향상을 도모하였다.

사례분석을 통한 객체검출 기술의 건설현장 적용 방안에 관한 연구 (A Study on the Application of Object Detection Method in Construction Site through Real Case Analysis)

  • 이기석;강성원;신윤석
    • 한국재난정보학회 논문집
    • /
    • 제18권2호
    • /
    • pp.269-279
    • /
    • 2022
  • 연구목적: 본 연구의 목적은 건설현장의 재해 예방을 위해 딥러닝기반의 개인보호구 검출 모델을 개발하고, 실제 건설현장에 적용하여 분석하는 것이다. 연구방법: 본 연구의 수행 방법은 실제 환경의 데이터를 구축하고, 개발된 개인보호구 검출 모델을 적용하였다. 개인보호구 검출 모델은 크게 근로자 검출 및 개인보호구 착용 분류 모델로 구성되어 있다. 근로자 검출 모델은 딥러닝 기반의 알고리즘을 실제 현장에서 획득한 데이터셋을 구축하여 학습 및 근로자를 검출하였고, 개인보호구 착용 분류 모델은 앞단에서 추출된 근로자 검출영역에서 학습된 개인보호구 검출 알고리즘을 적용하였다. 구축된 모델의 검증을 위해 건설현장 3곳에서 획득된 데이터를 통해 실험결과를 도출하였다. 연구결과: 데이터베이스 12,000장을 구축하여 정상검출 9,460장(78.8%), 오검출 1,468(12.2%), 미검출 1,072장(8.9%)으로 나타났으며 주요 원인은 영상에서의 객체 크기, 객체간 중첩(Occulusion), 객체 잘림, 그림자에 의한 오검출로 분류되었다. 결론: 개인보호구 검출모델은 현장 상황마다 다른 검출률을 확인할 수 있었고, 본 연구의 결과가 차후 현장적용을 위한 연구에 활용될 수 있을 것으로 여겨진다.

상태 공유와 결정트리 방법을 이용한 효율적인 문맥 종속 프로세스 모델링 (Efficient context dependent process modeling using state tying and decision tree-based method)

  • 안찬식;오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.369-377
    • /
    • 2010
  • HMM(Hidden Markov Model)을 사용하는 어휘 인식 시스템에서 인식 시 훈련 중에 나타나지 않는 모델들로 인해 인식률의 저하를 가져오며 인식 대상 어휘가 변경되거나 추가되면 데이터베이스의 수집과 훈련 과정을 수행하여 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 방법과 모델 공유 방법을 사용하여 효율적인 문맥 종속 프로세스 모델링 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 모델 공유 방법을 이용하여 모델의 재생성 과정을 줄이고 강인하고 정확한 문맥 종속 음향 모델링을 제공한다. 또한, 모델의 수를 줄이고 훈련 중에 나타나지 않는 모델들에 대해 문맥 종속 유사 음소 모델을 제공하여 훈련 중에 나타나지 않는 모델의 문제점을 해결하고 훈련성을 확보하였다. 제안된 방법으로 6종류의 음성 데이터베이스를 이용하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 어휘 종속 인식 실험에서는 98.01%의 성능을 보였고, 어휘 독립 인식 실험에서 97.38%의 성능을 보였다.

한국어 파열음 인식을 위한 피쳐 셉 입력 인공 신경망 모델에 관한 연구 (A STUDY ON THE IMPLEMENTATION OF ARTIFICIAL NEURAL NET MODELS WITH FEATURE SET INPUT FOR RECOGNITION OF KOREAN PLOSIVE CONSONANTS)

  • 김기석;김인범;황희융
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.535-538
    • /
    • 1990
  • The main problem in speech recognition is the enormous variability in acoustic signals due to complex but predictable contextual effects. Especially in plosive consonants it is very difficult to find invariant cue due to various contextual effects, but humans use these contextual effects as helpful information in plosive consonant recognition. In this paper we experimented on three artificial neural net models for the recognition of plosive consonants. Neural Net Model I used "Multi-layer Perceptron ". Model II used a variation of the "Self-organizing Feature Map Model". And Model III used "Interactive and Competitive Model" to experiment contextual effects. The recognition experiment was performed on 9 Korean plosive consonants. We used VCV speech chains for the experiment on contextual effects. The speech chain consists of Korean plosive consonants /g, d, b, K, T, P, k, t, p/ (/ㄱ, ㄷ, ㅂ, ㄲ, ㄸ, ㅃ, ㅋ, ㅌ, ㅍ/) and eight Korean monothongs. The inputs to Neural Net Models were several temporal cues - duration of the silence, transition and vot -, and the extent of the VC formant transitions to the presence of voicing energy during closure, burst intensity, presence of asperation, amount of low frequency energy present at voicing onset, and CV formant transition extent from the acoustic signals. Model I showed about 55 - 67 %, Model II showed about 60%, and Model III showed about 67% recognition rate.

  • PDF

심층신경망을 이용한 짧은 발화 음성인식에서 극점 필터링 기반의 특징 정규화 적용 (Applying feature normalization based on pole filtering to short-utterance speech recognition using deep neural network)

  • 한재민;김민식;김형순
    • 한국음향학회지
    • /
    • 제39권1호
    • /
    • pp.64-68
    • /
    • 2020
  • 가우스 혼합 모델-은닉 마코프 모델(Gaussian Mixture Model-Hidden Markov Model, GMM-HMM)을 이용하는 전통적인 음성인식 시스템에서는, 극점 필터링 기반의 켑스트럼 특징 정규화 방식이 잡음 환경에서 짧은 발화의 인식 성능을 향상시키는데 효과적이었다. 본 논문에서는 심층신경망(Deep Neural Network, DNN)을 이용하는 최신의 음성인식 시스템에서도 이 방식의 유용성이 있는지 검토한다. AURORA 2 DB에 대한 실험 결과, 특히 훈련 및 테스트 환경 사이의 불일치가 클 때에, 극점 필터링 기반의 켑스트럼 평균 분산 정규화 방식이 극점 필터링을 사용하지 않는 방식에 비해 매우 짧은 발화의 인식 성능을 개선시킴을 보여 준다.

DMS 모델과 이중 스펙트럼 특징을 이용한 HMM에 의한 음성 인식 (HMM-based Speech Recognition using DMS Model and Double Spectral Feature)

  • 안태옥
    • 한국산학기술학회논문지
    • /
    • 제7권4호
    • /
    • pp.649-655
    • /
    • 2006
  • 본 논문은 화자 독립의 음성인식을 위한 연구로써, DMS 모델에 의한 DMSVQ(Dynamic Multi-Section Vector Quantization) 코드북과 이중 스펙트럼 특징을 이용한 HMM(Hidden Markov Model) 음성인식 방법을 제안한다. 정적 스펙트럼 특징으로서는 LPC ?S스트럼 계수를 이용하였고, 동적 스펙트럼 특징으로는 LPC ?S스트럼의 회귀계수를 사용하였다. 이들 두개의 스펙트럼 특징들을 각각 VQ 코드북으로 양자화되고, DMS 모델을 이용한 HMM은 입력으로써 정적 스펙트럼 특징과 동적 스펙트럼 특징을 받아드림으로써 모델링된다. 제안된 방법에 의한 인식 실험은 기존의 다양한 인식 방법에 의한 인식 실험들과 비교를 위해 동일한 데이터와 조건 하에서 수행하였다. 실험 결과, 본 연구에서 제안한 방법이 기존의 방법들보다 우수한 방법임을 입증하였다.

  • PDF