• 제목/요약/키워드: Model Power Line

검색결과 822건 처리시간 0.039초

윈도우환경을 기반으로 한 최적전력조류 프로그램 팩키지 개발 (Windows Based Programming for Optimal Power Flow Analysis)

  • 김규호;이상봉;이재규;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.239-242
    • /
    • 2001
  • This paper presents a windows program package for solving security constrained OPF in interconnected power systems, which is based on the combined application of evolutionary programming(EP) and sequential quadratic programming(SQP). The objective functions are the minimization of generation fuel costs and system power losses. The control variables are the active power of the generating units, the voltage magnitude of the generator, transformer tap settings and SVC setting. The state variables are the bus voltage magnitude, the reactive power of the generating unit, line flows and the tie line flow. In OPF considering security, the outages are selected by contingency ranking method. The resulting optimal operating point has to be feasible after outages such as any single line outage(respect of voltage magnitude, reactive power generation and power flow limits). The OPF package proposed is applied to 10 machines 39 buses model system.

  • PDF

Planning of HVDC System Applied to Korea Electric Power Grid

  • Choi, DongHee;Lee, Soo Hyoung;Son, Gum Tae;Park, Jung-Wook;Baek, Seung-Mook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.105-113
    • /
    • 2018
  • This paper proposes pre-analysis on planning of high-voltage direct current (HVDC) transmission system applied to Korea electric power grid. HVDC transmission system for interface lines has been considered as alternative solution for high-voltage AC transmission line in South Korea since constructing new high-voltage AC transmission lines is challenging due to political, environmental and social acceptance problems. However, the installation of HVDC transmission system as interface line in AC grid must be examined carefully. Thus, this paper suggests three scenarios to examine the influences of the installation of HVDC transmission system in AC grid. The power flow and contingency analyses are carried out for the proposed scenarios. Power reserves in metro area are also evaluated. And then the transient stability analysis focusing on special protection scheme (SPS) operations is analyzed when critical lines, which are HVDC lines or high voltage AC lines, are tripped. The latest generic model of HVDC system is considered for evaluating the impacts of the SPS operations for introducing HVDC system in the AC grid. The analyses of proposed scenarios are evaluated by electromechanical simulation.

전력시스템 안전도 향상을 위한 다기 UPFC의 최적 운전점 결정 (The Optimal Operating Points of Multiple UPFCs for Enhancing Power System Security Level)

  • 임정욱;문승일
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권8호
    • /
    • pp.388-394
    • /
    • 2001
  • This paper presents how to determine the optimal operating points of Unified Power Flow controllers (UPFC) the line flow control of which can enhance system security level. In order to analyze the effect of these devices on the power system, the decoupled model has been employed as a mathematical model of UPFC for power flow analysis. The security index that indicates the level of congestion of transmission line has been proposed and minimized by iterative method. The sensitivity of objective function for control variables of and UPFC has been derived, and it represents the change in the security index for a given set of changes in real power outputs of UPFC. The proposed algorithm with sensitivity analysis gives the optimal set of operating points of multiple UPECs that reduces the index or increases the security margin and Marquart method has been adopted as an optimization method because of stable convergence. The algorithm is verified by the 10-unit 39-bus New England system that includes multiple FACTS devices. The simulation results show that the power flow congestion can be relieved in normal state and the security margin can be guaranteed even in a fault condition by the cooperative operation of multiple UPECs.

  • PDF

Modeling, Simulation and Fault Diagnosis of IPFC using PEMFC for High Power Applications

  • Darly, S.S.;Vanaja Ranjan, P.;Justus Rabi, B.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.760-765
    • /
    • 2013
  • An Interline Power Flow Controller (IPFC) is a converter based controller which compensates and balance the power flow among multi-lines within the same corridor of the multi-line subsystem. The Interline Power Flow Controller consists of a voltage source converter based Flexible AC Transmission System (FACTS) controller for series compensation. The reactive voltage injected by individual Voltage Source Converter (VSC) can be controlled to regulate active power flow in the respective line in which one VSC regulates the DC voltage, the other one controls the reactive power flows in the lines by injecting series active voltage. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB Simulink and PSPICE. The results obtained by MATLAB are compared with the results obtained by PSPICE and compared with theoretical values.

한국전력 가공송전선의 허용전류를 증가시키기 위한 기상모델의 평가 (An Evaluation of Weather Model for Increasing Ampacity in KEPCO's Overhead Transmission Lines)

  • 김성덕
    • 조명전기설비학회논문지
    • /
    • 제18권2호
    • /
    • pp.125-134
    • /
    • 2004
  • 전력설비 시장의 새롭게 조정된 경제환경으로 인하여 송전선로에 대한 투자와 운용 정책에 근본적인 변화가 초래되었다. 따라서, 최악의 기상조건을 사용하는 형식적인 가정들을 토대로 주어지는 도체의 허용전류를 증가시키기 위하여 현재 설비를 평가하는 것이 중요하게 되었다. 여전히 세계의 대부분 전력회사에서는 정적송전용량을 채용하고 있지만, 몇몇 회사들은 송전용량을 증가시키기 위하여 동적송전용량을 실시간으로 모니터링 하는 등 다양한 시도를 해왔다. 이 연구는 기상모델로 규정된 한국전력공사(KEPCO)의 송전선로의 정적송전용량을 평가하기 위한 시도이다. 과거 기상청에서 관측된 기상 데이터를 근거로 송전용량을 결정하기 위한 몇 가지 환경적 특성을 검토하였다. 그 결과, 한국전력의 송전선로에 계절별 또는 지역별 정격을 적용할 수 있으며, 현재 운용 중인 도체를 새로운 고내열 도체로 교체하지 않더라도 기존 송전용량을 좀더 증대시킬 수 있음을 확인하였다.

Real-time line control system for automated robotic assembly line for multi-PCB models

  • Park, Jong-Oh;Hyun, Kwang-Ik;Um, Doo-Gan;Kim, Byoung-Doo;Cho, Sung-Jong;Park, In-Gyu;Kim, Young-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1915-1919
    • /
    • 1991
  • The efficiency of automated assembly line is increased by realizing the automation of each assembly cell, monitoring the line information and developing the real-time line control system it. which production flow is controllable. In this paper, the several modules which are important factors when constructing automated real-time control system, such as, line control S/W module, real-time model change module, error handling module and line production management S/W module, are developed. For developing these important programming modules, real-time control and multi-tasking techniques are integrated. In this paper, operating method of real-time line control in PCB automated assembly line is proposed and for effective control of production line by using multi-tasking technique, proper operating method for relating real-time line control with multi-tasking is proposed by defining the levels of signals and tasks. CIM-Oriented modular programming method considering expandability and flexibility will be added for further research in the future.

  • PDF

Characteristic Impedances in Low-Voltage Distribution Systems for Power Line Communication

  • Kim, Young-Sung;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.29-34
    • /
    • 2007
  • The input and output impedances in a low voltage distribution system is one of the most important matters for power line communication because from the viewpoint of communication, the attenuation characteristic of the high frequency signals is greatly caused by impedance mismatch during sending and receiving. The frequency range is from 1MHz to 30MHz. Therefore, this paper investigates the input and output impedances in order to understand the characteristic of high frequency signals in the low voltage distribution system between a pole transformer and an end user. For power line communication, the model of Korea's low voltage distribution system is proposed in a residential area and then the low voltage distribution system is set up in a laboratory. In the low voltage distribution system, S parameters are measured by using a network analyzer. Finally, input and output impedances are calculated using S parameters.

고속전철 주행시 이선현상 모델링 방법에 따른 전도성 노이즈 해석 (Analysis of conducted noise on modeling methods for loss of contact during traction of high-speed rail vehicle)

  • 김재문;김양수;장진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.72-75
    • /
    • 2008
  • The Electromagnetic Interference(EMI) in railway applications is largely due to doing the power conversion for traction and Auxiliary system on the Highspeed Electric Multiple Unit-400X(HEMU-400X). In order to research on EMI in railway applications, it were included how much the HEMU-400X generates it and it has an effect on the equipments of electric system which resulted from Power Line Disturbance (PLD) phenomenon by the loss of contact during its running. In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated. The analysis of the loss of contact based on Power Simulator program software is performed to develop power line disturbance model suitable for high speed operation. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

  • PDF

고장전류에 의한 초전도 전력케이블의 내부전류 변화 분석 (Fault Current Analysis of HTS Power Cable)

  • 방종현;제향호;김재호;심기덕;조전욱;윤재영;장현만;이수길;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.290-291
    • /
    • 2006
  • HTS(High Temperature Superconductivity) Power Cable has a different characteristic with conventional distribution line, so installation and operation condition are different. In this paper, internal fault current characteristic s of HTS power cable was analyzed. For this, EMTDC model component of HTS power cable was developed. The developed EMTDC model component is applied to distribution line, then authors analyze internal current characteristics of HTS Power cable when fault occurred.

  • PDF