• 제목/요약/키워드: Model Partitioning

검색결과 274건 처리시간 0.024초

Compression of 3D Mesh Geometry and Vertex Attributes for Mobile Graphics

  • Lee, Jong-Seok;Choe, Sung-Yul;Lee, Seung-Yong
    • Journal of Computing Science and Engineering
    • /
    • 제4권3호
    • /
    • pp.207-224
    • /
    • 2010
  • This paper presents a compression scheme for mesh geometry, which is suitable for mobile graphics. The main focus is to enable real-time decoding of compressed vertex positions while providing reasonable compression ratios. Our scheme is based on local quantization of vertex positions with mesh partitioning. To prevent visual seams along the partitioning boundaries, we constrain the locally quantized cells of all mesh partitions to have the same size and aligned local axes. We propose a mesh partitioning algorithm to minimize the size of locally quantized cells, which relates to the distortion of a restored mesh. Vertex coordinates are stored in main memory and transmitted to graphics hardware for rendering in the quantized form, saving memory space and system bus bandwidth. Decoding operation is combined with model geometry transformation, and the only overhead to restore vertex positions is one matrix multiplication for each mesh partition. In our experiments, a 32-bit floating point vertex coordinate is quantized into an 8-bit integer, which is the smallest data size supported in a mobile graphics library. With this setting, the distortions of the restored meshes are comparable to 11-bit global quantization of vertex coordinates. We also apply the proposed approach to compression of vertex attributes, such as vertex normals and texture coordinates, and show that gains similar to vertex geometry can be obtained through local quantization with mesh partitioning.

DYNAMIC CHARACTERISTICS OF SCALED-DOWN W-BEAMS UNDER IMPACT

  • Hui, T.-Y.-J.;Ruan, H.-H.;Yu, T.-X.
    • International Journal of Automotive Technology
    • /
    • 제4권1호
    • /
    • pp.31-40
    • /
    • 2003
  • W-beam guardrail system has been the most popular roadside safety device around the world. Through large plastic deformation and corresponding energy dissipation, a W-beam guardrail system contains and re-directs out-of-control vehicles so as to reduce the impact damage on the vehicle occupants and the vehicles themselves. In this paper, our recent experiments on 1 : 3.75 downscaled W-beam and the beam-post system are reported. The static and impact test results on the load characteristics, the global response and the local cross-sectional distortion are reveled. The effects of three different end-boundary conditions for the beam-only testing are examined. It is found that the load characteristics are much dependent on the combined contribution of the local cross-sectional distortion and the end-supporting conditions. The energy Partitioning between the beam and the supporting Posts in the beam-Post-system testing were also examined. The results showed that the energy dissipation partitioning changed with the input impact energy. Finally, a simple mass-spring model is developed to assess the dynamic response of a W-beam guardrail system in response to an impact loading. The model's prediction agrees well with the experimental results.

마코프 체인 몬테카를로 및 앙상블 칼만필터와 연계된 추계학적 단순 수문분할모형 (Stochastic Simple Hydrologic Partitioning Model Associated with Markov Chain Monte Carlo and Ensemble Kalman Filter)

  • 최정현;이옥정;원정은;김상단
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.353-363
    • /
    • 2020
  • Hydrologic models can be classified into two types: those for understanding physical processes and those for predicting hydrologic quantities. This study deals with how to use the model to predict today's stream flow based on the system's knowledge of yesterday's state and the model parameters. In this regard, for the model to generate accurate predictions, the uncertainty of the parameters and appropriate estimates of the state variables are required. In this study, a relatively simple hydrologic partitioning model is proposed that can explicitly implement the hydrologic partitioning process, and the posterior distribution of the parameters of the proposed model is estimated using the Markov chain Monte Carlo approach. Further, the application method of the ensemble Kalman filter is proposed for updating the normalized soil moisture, which is the state variable of the model, by linking the information on the posterior distribution of the parameters and by assimilating the observed steam flow data. The stochastically and recursively estimated stream flows using the data assimilation technique revealed better representation of the observed data than the stream flows predicted using the deterministic model. Therefore, the ensemble Kalman filter in conjunction with the Markov chain Monte Carlo approach could be a reliable and effective method for forecasting daily stream flow, and it could also be a suitable method for routinely updating and monitoring the watershed-averaged soil moisture.

개념적 수문분할모형의 보정에 미치는 수문기후학적 조건의 영향 (Effects of Hydro-Climate Conditions on Calibrating Conceptual Hydrologic Partitioning Model)

  • 최정현;서지유;원정은;이옥정;김상단
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.568-580
    • /
    • 2020
  • Calibrating a conceptual hydrologic model necessitates selection of a calibration period that produces the most reliable prediction. This often must be chosen randomly, however, since there is no objective guidance. Observation plays the most important role in the calibration or uncertainty evaluation of hydrologic models, in which the key factors are the length of the data and the hydro-climate conditions in which they were collected. In this study, we investigated the effect of the calibration period selected on the predictive performance and uncertainty of a model. After classifying the inflows of the Hapcheon Dam from 1991 to 2019 into four hydro-climate conditions (dry, wet, normal, and mixed), a conceptual hydrologic partitioning model was calibrated using data from the same hydro-climate condition. Then, predictive performance and post-parameter statistics were analyzed during the verification period under various hydro-climate conditions. The results of the study were as follows: 1) Hydro-climate conditions during the calibration period have a significant effect on model performance and uncertainty, 2) calibration of a hydrologic model using data in dry hydro-climate conditions is most advantageous in securing model performance for arbitrary hydro-climate conditions, and 3) the dry calibration can lead to more reliable model results.

POSTERIOR COMPUTATION OF SURVIVAL MODEL WITH DISCRETE APPROXIMATION

  • Lee, Jae-Yong;Kwon, Yong-Chan
    • Journal of the Korean Statistical Society
    • /
    • 제36권2호
    • /
    • pp.321-333
    • /
    • 2007
  • In the proportional hazard model with the beta process prior, the posterior computation with the discrete approximation is considered. The time period of interest is partitioned by small intervals. On each partitioning interval, the likelihood is approximated by that of a binomial experiment and the beta process prior is by a beta distribution. Consequently, the posterior is approximated by that of many independent binomial model with beta priors. The analysis of the leukemia remission data is given as an example. It is illustrated that the length of the partitioning interval affects the posterior and one needs to be careful in choosing it.

융통성 있는 스레드 분할 시스템 설계와 평가 (Design and Evaluation of Flexible Thread Partitioning System)

  • 조선문
    • 인터넷정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.75-83
    • /
    • 2007
  • 다중스레드 모델은 긴 메모리 참조 지체 시간과 동기화의 문제점을 해결할 수 있다는 점에서 대규모 병렬 시스템에 매우 효과적이다. 다중스레드 병렬기계를 위하여 Non-Strict 함수 프로그램을 번역할 때 가장 중요한 것은 순차적으로 수행될 수 있는 부분을 찾아내어 스레드로 분할하는 것이다. 기존의 분할 알고리즘은 조건식의 판단식, 참실행식, 거짓실행식을 기본 블록으로 나누고 각각에 대하여 지역 분할을 적용한다. 이러한 제약은 스레드의 정의를 약간 수정하여 스레드 내에서의 분기를 허용한다면 좀더 좋은 분할을 얻을 수 있다. 스레드 내에서의 분기는 병렬성을 감소시키거나 동기화의 횟수를 증가 시키거나 또는 교착상태를 발생시키는 등 스레드 분할의 기본 원칙을 어기지 않으며 오히려 스레드 길이를 증가시키거나 동기화 횟수를 줄이는 장점을 가질 수 있다. 본 논문에서는 조건식의 세 가지 기본 블록을 하나 또는 두 개의 기본 블록으로 병합함으로서 스레드 분할을 향상시키는 방법을 제안한다.

  • PDF

Classification by feedback structure and partitioning into acyclic subgraphs for a cyclic workflow graph

  • Choi, Yong-Sun
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.718-721
    • /
    • 2004
  • This paper introduces a novel method of partitioning a cyclic workflow graph into the subgraphs of acyclic flows. The way of iterative classification of nodes according to feedback structures and deriving subgraphs of acyclic flows is described with illustrative examples. The proposed method allows a cyclic workflow model to be analyzed further, if necessary, with several smaller subflows, which are all acyclic.

  • PDF

막기공에서의 용질분배와 배제에 대한 콜로이드 상효작용의 역할 (The Role of Colloidal Interactions on the Solute Partitioning and the Rejection Occurred in Membrane Pores)

  • 전명석
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1996년도 추계 총회 및 학술발표회
    • /
    • pp.3-7
    • /
    • 1996
  • A rigorous analysis on the effect of colloidal interactions on the separation characteristic has been extended to the case of non-dilute charged solute concentration. The solute partitioning within slit pores for a wide range of solute concentration has been predicted by performing the Monte Carlo technique. Using a hindered transport model, rejection coefficients have been estimated from the predicted concentration profile.

  • PDF

삼차원 모델의 점진적인 렌더링과 오류 강인을 위한 효율적인 데이터 분할 방법 (CODAP) (Data Partitioning for Error Resilience and Incremental Rendering of 3D Model)

  • 송문섭;안정환;김성진;한만진;호요성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.1089-1092
    • /
    • 1999
  • Applications using 3D models are increasing recently. Since 3D polygonal models are structured by a triangular mesh, the coding of polygonal models in strips of triangles is an efficient way of representing the data. These strips may be very long, and may take a long time to render or transmit. If the triangle strips are partitioned, it may be possible to perform more efficient data transmission in an error-prone environment and to display the 3D model progressively. In this paper, we devised the Component Based Data Partitioning (CODAP) which is based on Topological Surgery (TS). In order to support the error resilience and the progressively build-up rendering, we partition the connectivity, geometry, and properties of a 3D polygonal model. Each partitioned component is independently encoded and resynchronization between partitioned components is done.

  • PDF

멀티프로세서용 임베디드 시스템을 위한 UML 기반 소프트웨어 모델의 분할 기법 (A Partition Technique of UML-based Software Models for Multi-Processor Embedded Systems)

  • 김종필;홍장의
    • 정보처리학회논문지D
    • /
    • 제15D권1호
    • /
    • pp.87-98
    • /
    • 2008
  • 임베디드 시스템의 하드웨어 구성요소들에 대한 성능 고도화가 요구됨에 따라 이에 탑재될 소프트웨어의 개발 방법도 영향을 받고 있다. 특히 MPSoC와 같은 고가의 하드웨어 아키텍처에서는 효율적인 자원의 사용 및 성능의 향상을 위해 소프트웨어 측면에서의 고려가 필수적으로 요구된다. 따라서 본 연구에서는 임베디드 소프트웨어 개발과정에서 멀티프로세서 기반의 하드웨어 아키텍처를 고려하는 소프트웨어 태스크의 분할기법을 제시한다. 제시하는 기법은 UML 기반의 소프트웨어 모델을 CBCFG (Constraints-Based Control Flow Graph)로 변환하고, 이를 병렬성과 데이터 의존성을 고려한 소프트웨어 컴포넌트로 분할하는 기법이다. 이러한 기법은 임베디드 소프트웨어의 플랫폼 의존적인 모델 개발과 태스크 성능 예측 등을 위한 자료로 활용할 수 있다.