• Title/Summary/Keyword: Model Material Test

Search Result 1,461, Processing Time 0.03 seconds

High Temperature Characteristics of submicron GaAs MESFETs (고온 동작 MESFET 의 온도특성 해석)

  • 원창섭;유영한;신훈범;한득영;안형근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.379-382
    • /
    • 2002
  • GaAs has wide band gap, Therefore that malarial can used high Temperature application. in this paper explain to current-voltage characteristics of thermal effect. we experiment on thermal test of current-voltage characteristics and gate leakage current with real device. As a result, we propose a current-volatage characteristics model. that model base on gate leakage current, and gate leakage current influence gate source voltage.

  • PDF

Evaluation of Permanent Deformation Characteristics in Crushed Subbase Materials Using Shear Stress Ratio and Large Repeated Triaxial Compression Test (대형반복삼축시험과 전단응력비 개념을 이용한 쇄석 보조기층의 영구변형 특성평가)

  • Lim, Yu-Jin;Kim, In-Tae;Kwak, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.41-50
    • /
    • 2011
  • It is well-known that pavement is easily damaged by several factors including permanent deformation and fatigue crack, causing service life of the pavement to be shorter than expected. It is very important to predict amount of permanent deformation for designing pavement and developing design method of pavement. A new model of permanent deformation of pavement materials based on concept of shear stress ratio has been proposed because the lower pavement materials are highly affected by shear strength of the material. In this study a large repetitive triaxial load test has been adapted for performing test of permanent deformation of crushed subbase materials. The test procedure which includes concept of shear stress ratio has been newly developed. Several important model parameters can be obtained from the test that can be used for making correct permanent deformation model of the material.

A Study on the Stabilization of Coal Ash Ground by Geotechnical Engineering Analysis Cam-clay model for Deformation Analysis of Coal Ash Ground (토질공학적 해석방법에 의한 석탄회 폐기물지반의 안정처리에 관한 연구 -지반변형해석을 위한 Cam-clay model을 중심으로)

  • 천병식
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.81-92
    • /
    • 1998
  • Coal ash from thermal power plants has been produced in large quantity and discarded uselessly, However, it is possible to supply construction material properly by utilizing the coal ash as construction material. In this study, the applicable model and its applicability for deformation analysis of coal ash fill and reclamation ground are studied. Camflay model gives complete constitutive law which illustrates deformation and pore water pressure while soil is loaded under the various stresses at drained and undrained conditions. The merit of proposed model which is acquired from laboratory tests is that only a few soil parameters are available. The whole parameters of Camflay model are obtained by typical mechanical test and CV triaxial test on the sample with optimum mixing ratio( i.e. fly ash : bottom ash=5:5) Then the results from proposed numerical analysis are compared with laboratory results. The differences between laboratory test and numerical analysis are negligible. Parameters deter mined from laboratory tests are useful as a basic data for deformation analysis of coal ash reclamation ground using Camflay model.

  • PDF

Data driven inverse stochastic models for fiber reinforced concrete

  • Kozar, Ivica;Bede, Natalija;Bogdanic, Anton;Mrakovcic, Silvija
    • Coupled systems mechanics
    • /
    • v.10 no.6
    • /
    • pp.509-520
    • /
    • 2021
  • Fiber-reinforced concrete (FRC) is a composite material where small fibers made from steel or polypropylene or similar material are embedded into concrete matrix. In a material model each constituent should be adequately described, especially the interface between the matrix and fibers that is determined with the 'bond-slip' law. 'Bond-slip' law describes relation between the force in a fiber and its displacement. Bond-slip relation is usually obtained from tension laboratory experiments where a fiber is pulled out from a matrix (concrete) block. However, theoretically bond-slip relation could be determined from bending experiments since in bending the fibers in FRC get pulled-out from the concrete matrix. We have performed specially designed laboratory experiments of three-point beam bending with an intention of using experimental data for determination of material parameters. In addition, we have formulated simple layered model for description of the behavior of beams in the three-point bending test. It is not possible to use this 'forward' beam model for extraction of material parameters so an inverse model has been devised. This model is a basis for formulation of an inverse model that could be used for parameter extraction from laboratory tests. The key assumption in the developed inverse solution procedure is that some values in the formulation are known and comprised in the experimental data. The procedure includes measured data and its derivative, the formulation is nonlinear and solution is obtained from an iterative procedure. The proposed method is numerically validated in the example at the end of the paper and it is demonstrated that material parameters could be successfully recovered from measured data.

Quality Assessment by Analysis of Yoke Caulking Process Considering Strain Rate Sensitivity (변형률속도 민감성을 고려한 요크 코킹공정의 해석에 의한 품질 평가)

  • 박문식;강경모;한덕수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.37-46
    • /
    • 2003
  • This paper is to predict quality deterioration resulting from a caulking process of yoke which is a part of automotive steering system. The caluking is a plastic deformation process involving such as impact of high speed tool, contacts between part and fixtures and strain rate sensitivity of the part material. Elaborate application of finite element method is neccesary to calculate changes of part dimensions because they fall into a level of tolerances. Simple work hardening and strain rate sensitive model is proposed fur the material and applied for the simulation by using Abaqus which is able to cater for elastoplastic rate sensitive material and contacts. Numerical results of test models that represent tensile bar and tensile plate are compared with material data inputs. Dimensional changes for the yoke are calculated from simulations and compared to the mesurements and they show good agreement. The method presented here with the material model proved to be valuable to assess quality deterioration for similar metal forming processes.

A Study on Structural Safety of a Urethane Wheel Using FEM (유한요소법을 이용한 우레탄 휠의 구조 안전성에 관한 연구)

  • 송하종;정일호;이수호;박태원;박중경;이형;조동협;김혁;이경목
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1042-1047
    • /
    • 2004
  • Urethane is a high polymeric and elastic material useful in designing mechanic parts that cannot be molded in rubber or plastic material. Especially, urethane is high in mechanical strength and anti-abrasive. Hereby, an urethane coated aluminum wheel is used for supporting of OHT vehicle moving back and forth to transport products. For the sake of verifying the safety of the vehicle, structural safety for applied maximum dynamic load on a urethane wheel needs to be carefully examined while driving. Therefore, we have performed the dynamic simulation on the OHT vehicle model. Although the area definition of applied load can be obtained from the previous study of Hertzian and Non-Hertzian contact force model when having exact properties of contact material, static analysis is simulated, since the proper material properties of urethane have not been guaranteed, after we have performed the actual contact area test for each load. In case of this study, the method of distributing load for each node is included. Finally, in comparison with result of analysis and load-displacement curve obtained from the compression test, we have defined the material properties of urethane. In the analysis, we have verified the safety of the wheel. After all, we have performed a mode analysis using the obtained material properties. With the result, we have the reliable finite element model.

  • PDF

A Study on Structural Safety of a Urethane Wheel Using FEM (유한요소법을 이용한 우레탄 휠의 구조 안전성에 관한 연구)

  • Song Ha Jong;Jong Il Ho;Yoon Ji Won;Jun Kab Jin;Park Joong Kyung;Lee Hyung;Park Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.114-120
    • /
    • 2005
  • Urethane is a high polymeric and elastic material useful in designing mechanic parts that cannot be molded with rubber or plastic material. In particular, urethane is high in mechanical strength and anti-abrasive. Hereby, a urethane coated aluminum wheel is used to support of the OHT vehicle moving back and forth to transport products. For the sake of verifying the safety of the vehicle, structural safety fur applied maximum dynamic load on a urethane wheel must be examined carefully while driving. Therefore, we performed a dynamic simulation on the OHT vehicle model and we determined the driving load. The area definition of applied load may be obtained from the previous study of Hertzian and Non-Hertzian contact force model having exact properties of contact material. But the static analysis is simulated after we have performed the actual contact area test for each load since the proper material properties of urethane have not been guaranteed. In this study, the method of distributing loads for each node is included. Finally, in coMParison with the results of analysis and load-displacement curve obtained from the compression test, we have defined the material properties of urethane. In the analysis, we verified the safety of the wheel. Finally, we performed a mode analysis using the obtained material properties. With these results, we presented a reliable finite element model.

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

Rubber Shear Modulus Prediction of Finite Element Method (전산해석을 통한 고무전단강성 예측)

  • Kwon, Tae-Hoon;Kim, Byung-Hoon;Rho, Tae-Ho;Lee, Won-Bok;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.189-192
    • /
    • 2007
  • The qualification test of rubber product is consisted of uniaxial tensile, pure shear, biaxial and compression test. Uniaxial test result is used for material property of Finite Element Method. Comparison of uniaxial tensile test and analysis satisfied requirement. A study has qualificated result of QLS analysis model for material property of uniaxial test and shear modulus.

  • PDF

The method using dynamic load and static load figures out gust factor of the membrane structure (동적하중과 정적하중을 이용한 막구조의 거스트 계수 산출 방법)

  • Wang, Ben-Gang;Jeong, Jae-Yong;You, Ki-Pyo;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.19-24
    • /
    • 2008
  • The thesis is for gust factor needing when calculate the wind resistance design. For the gust factor, to the membrane structural model, carry through the wind tunnel test and the static load test. Therefore, at first through the tensile test of the fabric material, designate the material of the membrane structural model. Then, to saddle, wave, arch and point four kinds of basic shape membrane structural models, carry on the wind tunnel test, determine their dynamic load and distortion on lateral direction. Finally, according to distort situation of the membrane structure in the wind tunnel test, carry on the static load experiment outside of the wind tunnel, calculate static load which corresponding with distort. According to dynamic load and the static load, figure out gust factor of these kinds of basic membrane structure.

  • PDF