• 제목/요약/키워드: Model Material Experiment

검색결과 486건 처리시간 0.028초

횡등방성체용 광탄성재료 개발에 관한 연구 (A Study on the Development of Photoelastic Experiment Model Material for Transversely Isotropic Material)

  • 황재석;김병일;이광호;최선호
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1876-1888
    • /
    • 1995
  • In this paper, glass surface-mat reinforced epoxy(G.S.R.E.) is developed, It is assured that the material(G.S.R.E.) can be used as photoelastic model material and it satisfy with the required properties of photoelastic model material. Therefore, the material can be used as model material of transparent photoelastic experiment when we analyze the stress distributions of transversely isotropic material by photoelastic experiment. When we use G.S.R.E. as photoelastic experiment model material, we had better use the G.S.R.E. which fiber volume ratio is less than 0.7% in the high temperature(stress freezing method) and than 1.74% in the room temperature. Relationships between stress fringe value and elastic modulus in transversely isotropic material are developed in this paper, it is assured by experiment that they are established in the room temperature or in the high temperature. Therefore we can obtain stress fringe value or elastic modulus from the relationships between stress fringe value and elastic modulus.

순수 비틀림 모멘트를 받는 직교 이방성체의 광탄성 시험법 개발에 관한 연구( I )-차원 광탄성 실험법 모델의 절단법과 $G_{i} 와 f_{ij}$ 의 측정법 - (A Study on the Development of Photoelastic Experiment for Orthotropic Material Under Pure Torsional Moment (I) : The Slicing Method Of 3-Dimensional Photoelastic Experiment Model And The Measuring Method of $G_{I} And f_{Ij}$)

  • 황재석;방창일
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.424-435
    • /
    • 1991
  • To develop the photoelastic experiment method for the orthotropic material under pure torsional moment is the main objective of this research. In the development of photoelastic experiment for orthotropic material under pure torsional moment, the important problems and their solutions are the same as following. In the model material for photoelastic experiment, it was found that C.F.E.C.(Copper Fiber Epoxy Composite) can be used as the model material of photoelastic experiment for orthotropic material. In the stress freezing cycle, it was assured that stress freezing cycle for epoxy can be used as the stress freezing cycle of the photoelastic experiment for orthotropic material. In the slicing method, it was found that the negative oblique slicing method can be effectively used as slicing method in 3-dimensional photoelastic experiment. In the measuring method of stress fringe values and physical properties in the high temperature, it was found that stress fringe values can be directly measured by experiment and physical properties can be directly or indirectly by equation between stress fringe values and physical properties developed by author. In the stress analysis method of orthotropic material under pure torsional moment by photoelastic experiment, it will be studied in the second paper.

자동차용 허브 클러치의 유동제어에 관한 실험적 연구 (Experimental Investigation on the Flow Control of Hub Clutch for Automobile)

  • 박종남;김동환;김병민
    • 소성∙가공
    • /
    • 제11권5호
    • /
    • pp.430-438
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in orther to change of the cold forging from conventional deep drawing forming. This technology can be summarized the complex forming, which consists of bulk forming and sheet forming, and multi-action forging, which be performed double action press. The proposed technology is applied to hub clutch model which is part of auto-transmission for automobile. The purpose of this study is to investigate the material flow behavior of hub clutch through control the relative velocity ratio and the stroke of mandrel and punch using the flow forming technique. First of all, the finite element simulations are applied to analyse optimal process conditions to prevent flow defect(necking defect etc.) from non-uniform metal flow, then the results are compared with the plasticine model material experiments. The punch load for real material is predict from similarity law. Finally, the model material experiment results are in good agreement with the FE simulation ones.

잔류응력을 고려한 광탄성실험의 광응력법칙 개발에 관한 연구 (1) (A Study on the Development of Stress Optic Law Considering Residual Stress in Photo elastic Experiment(I))

  • 서재국;황재석;최선호
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1190-1201
    • /
    • 1995
  • Photoelastic experiment has been restricted by three significant problems such as the problems of modeling for a complicated body, of development of experimental model material, and of residual stress in photoelastic specimen. The residual stress in photoelastic model materials is caused by molding, cutting and time effects, etc.. Especially, large residual stress exists on the interface of photoelastic model material for bi-material. Small residual stress occurred in the photoelastic model materials is usually neglected in the photoelastic experiments. But the residual stress provides some errors in the results of photoelastic experiments. In this paper, the stress optic law which can be effectively applied to the phtoelastic model materials with residual stress is developed. By using this stress optic law, we can obtain good results from isochromatic fringe patterns of photoelastic experiment specimen in which residual stress are involved. The stress optic law can be applied to obtain good results of photoelastic experiment from composite materials or bimaterials.

반용융 재료의 물성치 평가에 관한 연구(II) -모델재료의 후방압출 실험과 상계해석을 통한 반용융 재료의 유동응력식 결정- (A Study on Material Characterization of Semi-Solid Materials(II) -Determination of Flow Stress For Semi-Solid Materials Using Backward Extrusion Experiment with Model Material and Upper Bound Analysis-)

  • 이주영;김낙수
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.374-383
    • /
    • 1999
  • To determine the flow stress of semi-solid materials, a new combined method has been studied by experimental and analytic technique in the current approach. Using backward extrusion experiment and its numerical analysis, the characterization scheme of semi-solid materials according to the change of initial solid volume fraction has been proposed. Because that solid volume fraction is sensitive to temperature change, it is required to precisely control the temperature setting. Model materials can guarantee the establishment of material characterization technique from the noise due to temperature change. Thus, clay mixed with bonded abrasives was used for experiment and the change of initial solid fraction was copied out through the variation of mixing ratio. Upper bound method was adapted to increase in efficiency of the calculation in numerical analysis and new kinematically admissible velocity field was employed to improve the accuracy of numerical solution. It is thought that the material characterization scheme proposed in this study can be applied to not only semi-solid materials, but also other materials that is difficult to obtain the simple stress state.

  • PDF

직교 이방성의 광탄성 실험법 개발에 관한 연구 I (Study on the Development of Photoelastic Experiment of Orthotropic Material (I))

  • 최선호;황재석
    • 대한기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.8-18
    • /
    • 1988
  • 높은 강도의 재료개발과 항공기, 선박 각종 구조물 등의 여러 분야에서 복합재료의 사용이 증가함에 따라 복합재료 구조물의 응력분포나 응력집중, 파괴 역학 등에 대한 연구가 수행중이다. 이러한 복합체 구조물을 투과용 광탄성 실험을 통하여 해석하고져 할 때는 모델재료가 절대적으로 필요하므로 본 논문에서는 이 재료개발을 위한 내용을 수록하였다.

유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발 (Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control)

  • 박종남;박태준;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 제4회 압출 및 인발가공 심포지엄
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF

자동차용 피스톤 핀의 전.후방압출에서 유동제어에 관한 실험적 연구 (Experimental Investigation on the Flow Control in Forward-Backward Extrusion of Piston-Pin for Automobile)

  • 박종남;박태준;김동환;김병민
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1366-1375
    • /
    • 2002
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. The model experiment results are in good agreement with the FE simulation ones.

A Study of the Development of the Stress Optic Law of Photoelastic Experiment Considering Residual Stress

  • Suh, Jae-guk;Hawong, Jai-sug;Shin, Dong-chul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1674-1681
    • /
    • 2003
  • Photoelastic experiment has two significant problems. The first problem is manufacturing a model specimen for complicated shapes of structures. The second problem is residual stress contained in the photoelastic model material. In this paper, the stress optic law that can be effectively used on photoelastic model materials with residual stress is developed. By using the stress optic law as developed in this research, we can obtain good results in photoelastic experiments using model material in which residual stress is contained. It is assured that the stress optic law developed in this research is useful. Therefore, it is suggested that the stress optic law considering residual stress can be applied to the photoelastic experiment for the stress analysis of the composite materials or bi-materials in which the residual stress is easily contained.

소성가공시 재료유동에 대한 수치해석 및 모델실험 (Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material)

  • 김헌영;김동원
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.285-299
    • /
    • 1993
  • 본 연구에서는 UBET를 이용한 프로그램을 개발하여 소성가공 문제에 적용하였 으며, 형단조 가공에서 형 내부의 재료의 비정상 유동을 해석할 수 있는 알고리듬을 제시하였다. 매 변형단계에서 요소별 가공경화를 고려하여 자동적으로 요소시스템 (element system)을 재구성함으로써, UBET에 의한 소성가공 문제 해석을 효율적으로 할 수 있도록 하였다. 축대칭 형단조 문제에 있어서 리브의 높이대 폭의 비가 1.0, 2.0일때 UBET 및 탄소성 유한요소법에 의하여 형 내부의 재료 층만 과정을 시뮬레이션 하였으며, 단조 하중, 다이 충만도 및 재료의 유동 경향을 분석하여 적절한 유동 모델 과 초기 소재의 형상을 구하였다. 모델 재료를 사용한 형단조 모의실험을 수행하여 재료유동 및 변형 단계별 단조 하중분포 등을 구하였으며, 해석결과와 비교 분석하였 다. 또한 후방압출(backward extrusion) 및 평두형 펀치에 의한 평판압입(flat pu- nch indentation) 문제를 해석하였다. 후방압출시 모서리부의 라운딩(rounding) 효 과가 재료 유동에 미치는 영향을 고려하였으며, 평두형 펀치에 의한 평판압입에서는 상당 소성변형률(equivalent plastic strain)의 분포를 탄소성 유한요소법(elastic plastic finite element method)에 의한 결과와 비교하였다.