• Title/Summary/Keyword: Model Length

Search Result 5,062, Processing Time 0.035 seconds

Evaluation of LSTM Model for Inflow Prediction of Lake Sapgye (삽교호 유입량 예측을 위한 LSTM 모형의 적용성 평가)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.287-294
    • /
    • 2021
  • A Python-based LSTM model was constructed using a Tensorflow backend to estimate the amount of outflow during floods in the Gokgyo-cheon basin flowing into the Sapgyo Lake. To understand the effects of the length of input data used for learning, i.e., the sequence length, on the performance of the model, the model was implemented by increasing the sequence length to three, five, and seven hours. Consequently, when the sequence length was three hours, the prediction performance was excellent over the entire period. As a result of predicting three extreme rainfall events in the model verification, it was confirmed that an average NSE of 0.96 or higher was obtained for one hour in the leading time, and the accuracy decreased gradually for more than two hours in the leading time. In conclusion, the flood level at the Gangcheong station of Gokgyo-cheon can be predicted with high accuracy if the prediction is performed for one hour of leading time with a sequence length of three hours.

Experimental Study for the Speed-up of a Super-speed Train Model in the Partial Vacuum Tunnel (아진공 터널에서 초고속 열차의 속도향상에 관한 실험적 연구)

  • Kim, Dong-Hyeon;Kim, Jae-Heung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2064-2071
    • /
    • 2011
  • We are developing an innovative super-speed land transportation system running in a partial vacuum in tunnels with small inside diameter to reduce the aerodynamic drag forces. This paper presents the experimental results obtained on a small scale model when a super-speed train model passing through a tunnel with small inside diameter and a partial vacuum to reduce the aerodynamic drag forces. The experiments were performed on a 1/52-scale moving model rig in which a train model with a diameter of 58 mm and a length of 603 mm was accelerated in a launching tube with 12.27 m length by means of the compressed air launcher and then passed through a tunnel model with 17.149 m length. The partial vacuum was maintained in the tunnel in order to reduce the energy consumption of the propulsion system of the super-speed tube train at super-speed of 700 km/h. In this study, the blockage ratio of train to tunnel model is 0.336. Experimental results show the nonlinear effects of the vacuum on the speed-up of the train model in the tunnel model under the partial vacuum up to 0.21 atm and at the velocity up to 684 km/h. This paper is first study for experiments on the speed-up of a super-speed train model in the partial vacuum tunnels.

  • PDF

ANALYSIS OF QUEUEING MODEL WITH PRIORITY SCHEDULING BY SUPPLEMENTARY VARIABLE METHOD

  • Choi, Doo Il
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.147-154
    • /
    • 2013
  • We analyze queueing model with priority scheduling by supplementary variable method. Customers are classified into two types (type-1 and type-2 ) according to their characteristics. Customers of each type arrive by independent Poisson processes, and all customers regardless of type have same general service time. The service order of each type is determined by the queue length of type-1 buffer. If the queue length of type-1 customer exceeds a threshold L, the service priority is given to the type-1 customer. Otherwise, the service priority is given to type-2 customer. Method of supplementary variable by remaining service time gives us information for queue length of two buffers. That is, we derive the differential difference equations for our queueing system. We obtain joint probability generating function for two queue lengths and the remaining service time. Also, the mean queue length of each buffer is derived.

Estimation of Knee Muscle Length and Moment Arm Using Knee Joint Angle (무릎 관절각을 이용한 무릎 근육 길이와 모멘트 암 추정)

  • Lee, Jae-Kang;Nam, Yoon-Su
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.167-176
    • /
    • 2008
  • Recently, lots of studies are performed in developing of active orthosis. Exact and simple muscle force estimation is important in developing orthosis which assists muscle force for disabled people or physical laborers. Hill-type muscle model dynamics is common method for estimation of muscle forces. In Hill-type muscle model, we must know muscle length and moment arm which largely affect muscle force. And several methods are proposed to estimate muscle length and moment arm using joint angle. In this study, we compared estimation results of those method with data from body model of opensim to find which method is exact for estimation of muscle length and moment arm.

  • PDF

Strut-And-Tie Model for Headed Bar Anchored in Exterior Beam-Column Joint with Transverse Reinforcement (전단보강근이 배근된 외부 보기둥 접합부에 정착된 헤드 철근의 스트럿-타이 모델)

  • Chun, Sung-Chul;Hong, Sung-Gul;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.454-457
    • /
    • 2006
  • This study presents a strut-and-tie model for the development of headed bars in an exterior beam-column joint with transverse reinforcements. The tensile force of a headed bar is considered to be developed by head bearing together with bond along a bonded length as a partial embedment length. The model requires construction of struts with biaxially compressed nodal zones for head bearing and fan-shaped stress fields against neighboring nodal zones for bond stresses along the bonded length. Due to the existence of transverse reinforcements, the fan-shaped stress fields are divided into direct and indirect fan-shaped stress fields. A required development length and head size of a headed bar can be optimally designed by adjusting a proportion between a bond contribution and bearing contribution.

  • PDF

Study of Starting Pressure of a Supersonic Ejector with a Second-Throat (이차목을 갖는 초음속 이젝터 작동압력에 대한 연구)

  • Jin, Jung-Kun;Kwon, Se-Jin;Kim, Se-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.934-939
    • /
    • 2005
  • Starting pressure of a supersonic ejector with a second-throat was investigated. In case of mixing chamber length longer than a critical length, starting pressure is in proportion to length of the mixing chamber. In this study, we assumed that the ejector starts when the primary supersonic flow reaches inlet of the second-throat and the distance of the supersonic flow traveling can be expressed by multiplying an empirical factor to the first diamond shock length of overexpanded flow. To calculate the overexpanded supersonic flow, a mixing model was employed to compute secondary flow pressure and the result was applied to back pressure condition of overexpanded flow calculation. In the result, for three cases of primary nozzle area ratio, we could get accurate model of predicting the starting pressure by selecting a suitable empirical factors around 3.

Estimation of Muscle-tendon Model Parameters Based on a Numeric Optimization (최적화기법에 의한 근육-건 모델 파라미터들의 추정)

  • Nam, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.122-130
    • /
    • 2009
  • The analysis of human movement requires the knowledge of the Hill type muscle parameters, the muscle-tendon and moment arm length change as a function of joint angles. However, values of a subject's muscle parameters are very difficult to identify. It turns out from a sensitivity analysis that the tendon slack length and maximum muscle force are the two critical parameters among the Hill-type muscle model. Therefore, it could be claimed that the variation of the tendon slack length and maximum muscle force from the Delp's reference data will change the muscle characteristics of a subject remarkably. A numeric optimization method to search these tendon parameters specific to a subject is proposed, and the accuracy of the developed algorithm is evaluated through a numerical simulation.

Analytical Model for Transfer Bond Performance of Prestressing Strands (PS 강선의 정착부착성능에 관한 해석 모델)

  • 유승룡
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.92-101
    • /
    • 1994
  • A new analytical model is proposed to better understand the transfer bond performance in a prestressed pretensioned concrete beam. The transfer length is divided into an elastic and a plas tic zones in this model. The bond stress is assumed t.o increase proportionally with the slip t.o the lirnit of maximum bond stress within the elastic zone and remains at a constant maximum value wthin the plastic zone. Four main stress patterns: bond stress, slip, steel stress, and concrete stress distributions within the transfer length are obtained precisely. The total transfer length al\ulcornerd free-end slip obtained here give a close comparison to the test results by Cousins et al.

Minimum Message Length and Classical Methods for Model Selection in Univariate Polynomial Regression

  • Viswanathan, Murlikrishna;Yang, Young-Kyu;WhangBo, Taeg-Keun
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.747-758
    • /
    • 2005
  • The problem of selection among competing models has been a fundamental issue in statistical data analysis. Good fits to data can be misleading since they can result from properties of the model that have nothing to do with it being a close approximation to the source distribution of interest (for example, overfitting). In this study we focus on the preference among models from a family of polynomial regressors. Three decades of research has spawned a number of plausible techniques for the selection of models, namely, Akaike's Finite Prediction Error (FPE) and Information Criterion (AIC), Schwartz's criterion (SCH), Generalized Cross Validation (GCV), Wallace's Minimum Message Length (MML), Minimum Description Length (MDL), and Vapnik's Structural Risk Minimization (SRM). The fundamental similarity between all these principles is their attempt to define an appropriate balance between the complexity of models and their ability to explain the data. This paper presents an empirical study of the above principles in the context of model selection, where the models under consideration are univariate polynomials. The paper includes a detailed empirical evaluation of the model selection methods on six target functions, with varying sample sizes and added Gaussian noise. The results from the study appear to provide strong evidence in support of the MML- and SRM- based methods over the other standard approaches (FPE, AIC, SCH and GCV).

  • PDF

Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis

  • Chen, Lian-meng;Hu, Dong;Deng, Hua;Cui, Yu-hong;Zhou, Yi-yi
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1031-1043
    • /
    • 2016
  • Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis is studied in this paper. First, the element length was extracted as a fundamental variable, and the relationship between element length change and element internal force was established. By setting all pre-stresses in active cables to zero, the equation between the pre-stress deviation in the passive cables and the element length error was obtained to analyze and evaluate the error effects under different construction schemes. Afterwards, based on the probability statistics theory, the mathematical model of element length error is set up. The statistical features of the pre-stress deviation were achieved. Finally, a cable-strut tensile structure model with a diameter of 5.0 m was fabricated. The element length errors are simulated by adjusting the element length, and each member in one symmetrical unit was elongated by 3 mm to explore the error sensitivity of each type of element. The numerical analysis of error sensitivity was also carried out by the FEA model in ANSYS software, where the element length change was simulated by implementing appropriate temperature changes. The theoretical analysis and experimental results both indicated that different elements had different error sensitivities. Likewise, different construction schemes had different construction precisions, and the optimal construction scheme should be chosen for the real construction projects to achieve lower error effects, lower cost and greater convenience.