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ANALYSIS OF QUEUEING MODEL WITH PRIORITY

SCHEDULING BY SUPPLEMENTARY VARIABLE METHOD

DOO IL CHOI

Abstract. We analyze queueing model with priority scheduling by sup-

plementary variable method. Customers are classified into two types (
type-1 and type-2 ) according to their characteristics. Customers of each
type arrive by independent Poisson processes, and all customers regardless
of type have same general service time. The service order of each type

is determined by the queue length of type-1 buffer. If the queue length
of type-1 customer exceeds a threshold L, the service priority is given to
the type-1 customer. Otherwise, the service priority is given to type-2

customer. Method of supplementary variable by remaining service time
gives us information for queue length of two buffers. That is, we derive the
differential difference equations for our queueing system. We obtain joint
probability generating function for two queue lengths and the remaining

service time. Also, the mean queue length of each buffer is derived.
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1. Introduction

Queueing system is a mathematical model to characterize a waiting-line sit-
uation where the customers arrive at the facility, join the queue if it is not im-
mediately served and leave the facility after being served. Here, the arrivals and
the service of customers occur randomly. These queueing systems arise in a wide
variety of applications such as computer systems, telecommunication networks
including home networks and ubiquitous system. Many customers (traffics) in
these systems require the differentiated Quality of Service (QoS). Thus, when
the customers with different service requirements may be accommodated in the
system, these customers need to be handled differently [1,2]. These situations
finally must be modeled by a queueing system with priority [1].
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Recently, with applications in telecommunication networks, there has been
renewed the interest for queueing system with priority scheduling. Representa-
tively, to support the delay-sensitive customer (real-time traffic such as voice )
with stringent delay requirement, the Head of Line (HOL) priority (or nonpre-
emptive priority ) scheduling scheme has been applied [2,3]. In HOL priority
scheduling scheme, the delay-sensitive customer can satisfy their delay require-
ment sufficiently. On the other hand, the nondelay-sensitive customer (nonreal-
time traffic such as data) may be suffering by more many delay. This finally may
cause the information to be no use at the destination. To satisfy the Quality of
Service (QoS) of loss and waiting of delay-sensitive and nondelay-sensitive traffic
simultaneously, the dynamic priority models have been proposed and analyzed
[4,5]. One representative model is just Queue length threshold (QLT) scheduling
policy [6,7,8]. There also are overload control schemes to satisfy QoS of traffics
and to prevent congestion of network [9,10].

In this paper, in order to support the customers with different service require-
ments, we classify customers into two types called type-1 customers and type-2
customers. There are two buffers with infinite capacities to accommodate each
type customers. Arrivals of type-1 and type-2 customers are assumed to be
Poisson processes with rates λ1 and λ2, respectively. The type-1 and type-2
customers are served by a single server with general service time. That is, the
service times (S) of customers regardless of type are independent and identically

distributed with probability density function b(·). Let b̂(s) ,
∫∞
0

e−stb(t)dt be
the Laplace transform of the service time S. The service of customers in each
buffer is based on the first-come first-service (FCFS). The service priority of each
buffer is determined by queue length of the type-1 buffer. Concretely, we place
one threshold L on type-1 buffer. If the queue length for type-1 customers is less
than or equal to the threshold L, the type-2 customers are served. Otherwise,
the type-1 customers are served. If one of the buffers is empty, the customers
in other buffer are served. Here, the type-1 customers can be considered as
the nondelay-sensitive traffic and the type-2 customers can be considered as the
delay-sensitive traffic.

This is the same model with those of Knessl, Choi and Tier [5]. However, they
assumed the service time of customers to be the exponential distribution. It has
many restriction applying to general situation. We analyze the queueing system
with general service time. By using the method of supplementary variable by
remaining service time, we derive the differential difference equations. We obtain
joint probability generating function for two queue length and the remaining
service time. From these results, the queue lengths of each buffers also can be
derived.

2. Analysis

Let N1(t) and N2(t) be the number of type-1 and type-2 customers in each
buffer at time t, respectively. We analyze our model with remaining service
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time as supplementary variable. Let X(t) be the remaining service time of the
customer currently in service. We also introduce

ξ(t) =

{
1, if the server is busy at time t,

0, if the server is idle at time t.

We assume (λ1 + λ2)E(S) < 1 and consider only stable system.
Define

pm,n(x)dx = lim
t→∞

Pr{N1(t) = m,N2(t) = n,X(t) ∈ (x, x+ dx), ξ(t) = 1},

m, n ≥ 0

p0 = lim
t→∞

Pr{ξ(t) = 0}.

We then have the following ballance equation and the system of differential
difference equations:

(λ1 + λ2)p0 = p0,0(0). (1.1)

For m ≥ L+ 1, n ≥ 1,

−dpm,n(x)

dx
=− (λ1 + λ2)pm,n(x) + λ1pm−1,n(x)

+ λ2pm,n−1(x) + b(x)pm+1,n(0). (1.2)

For m ≥ L+ 1, n = 0,

−dpm,0(x)

dx
= −(λ1 + λ2)pm,0(x) + λ1pm−1,0(x) + b(x)pm+1,0(0). (1.3)

For m = L, n ≥ 1,

−dpL,n(x)

dx
=− (λ1 + λ2)pL,n(x) + λ1pL−1,n(x) + λ2pL,n−1(x)

+ b(x)pL+1,n(0) + b(x)pL,n+1(0). (1.4)

For m = L, n = 0,

−dpL,0(x)

dx
=− (λ1 + λ2)pL,0(x) + λ1pL−1,0(x)

+ b(x)pL+1,0(0) + b(x)pL,1(0). (1.5)

For 0 < m < L, n ≥ 1,

−dpm,n(x)

dx
=− (λ1 + λ2)pm,n(x) + λ1pm−1,n(x)
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+ λ2pm,n−1(x) + b(x)pm,n+1(0). (1.6)

For 0 < m < L, n = 0,

−dpm,0(x)

dx
=− (λ1 + λ2)pm,0(x) + λ1pm−1,0(x)

+ b(x)pm+1,0(0) + b(x)pm,1(0). (1.7)

For m = 0, n ≥ 1,

−dp0,n(x)

dx
=− (λ1 + λ2)p0,n(x)

+ λ2p0,n−1(x) + b(x)p0,n+1(0). (1.8)

For m = 0, n = 0,

−dp0,0(x)

dx
=− (λ1 + λ2)p0,0(x) + b(x)p1,0(0)

+ b(x)p0,1(0) + (λ1 + λ2)b(x)p0. (1.9)

and the normalization condition

∞∑
m,n=0

∫ ∞

0

pm,n(x)dx+ p0 = 1. (1.10)

Introduce the following probability generating functions:

G(x, z, w) ,
∞∑

n=0

∞∑
m=L

pm,n(x)z
m−Lwn,

Hj(x,w) ,
∞∑

n=0

pj,n(x)w
n, 0 ≤ j ≤ L.

From (1.2), (1.3), (1.4) and (1.5), we obtain

−∂G(x, z, w)

∂x
=− (λ1 + λ2)G(x, z, w) + λ1zG(x, z, w) + λ1HL−1(x,w)

+ λ2wG(x, z, w) +
b(x)

z
[G(0, z, w)−HL(0, w)]

+
b(x)

w
[HL(0, w)− pL,0(0)].

The above equation can be rewritten into the following linear differential equa-
tion:

∂G(x, z, w)

∂x
+ {λ1z + λ2w − (λ1 + λ2)}G(x, z, w)
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=

[
(
1

z
− 1

w
)HL(0, w)−

1

z
G(0, z, w) +

pL,0(0)

w

]
b(x)

− λ1HL−1(x,w). (2.1)

The solution of equation (2.1) is given by

G(x, z, w) =

[
(
1

w
− 1

z
)HL(0, w) +

G(0, z, w)

z
− pL,0(0)

w

]
×
∫ ∞

x

e{λ1z+λ2w−(λ1+λ2)}(t−x)b(t)dt

+ λ1

∫ ∞

x

e{λ1z+λ2w−(λ1+λ2)}(t−x)HL−1(t, w)dt. (2.2)

The unknown function G(0, z, w) is found by setting x = 0 in the equation (2.2).
After simple manipulation we obtain

G(0, z, w)

=
1

z − b̂(λ1 + λ2 − λ1z − λ2w)

[
z − w

w
b̂(λ1 + λ2 − λ1z − λ2w)HL(0, w)

− z

w
b̂(λ1 + λ2 − λ1z − λ2w)pL,0(0)

+λ1z

∫ ∞

0

e−{λ1+λ2−λ1z−λ2w}tHL−1(t, w)dt

]
. (2.3)

Let z = z1(w) be the solution of the equation z = b̂(λ1+λ2−λ1z−λ2w) within
the unit circle |z| = 1, where |w| ≤ 1. Then, we obtain

HL(0, w) =
z1(w)

(z1(w)− w)
pL,0(0)

+
λ1w

(z1(w)− w)

∫ ∞

0

e−{λ1+λ2−λ1z1(w)−λ2w}tHL−1(t, w)dt. (2.4)

Therefore, we must know pL,0(0) and HL−1(t, w) to obtain HL(0, w) and finally
G(x, z, w). From (1.6), (1.7), (1.8) and (1.9), we also obtain the following linear
differential equations:

∂Hm(x,w)

∂x
+ {λ2w − (λ1 + λ2)}Hm(x,w)

= −λ1Hm−1(x,w) + b(x)

[
1

w
(pm,0(0)−Hm(0, w))− pm+1,0(0)

]
,

0 < m < L. (2.5)

∂H0(x,w)

∂x
+ {λ2w − (λ1 + λ2)}H0(x,w)
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= b(x)

[
1

w
(p0,0(0)−H0(0, w))− p1,0(0)− (λ1 + λ2)p0

]
. (2.6)

The solutions of the linear differential equations (2.5) and (2.6) are given by

Hm(x,w) =

[
1

w
(Hm(0, w)− pm,0(0)) + pm+1,0(0)

]
×
∫ ∞

x

e{λ2w−(λ1+λ2)}(t−x)b(t)dt

+ λ1

∫ ∞

x

e{λ2w−(λ1+λ2)}(t−x)Hm−1(t, w)dt, 0 < m < L. (2.7)

H0(x,w) = [p1,0(0) + (λ1 + λ2)p0

− 1

w
(p0,0(0)−H0(0, w))

] ∫ ∞

x

e{λ2w−(λ1+λ2)}(t−x)b(t)dt. (2.8)

Setting x = 0 in the equations (2.7) and (2.8), we obtain

Hm(0, w) =
w

w − b̂(λ1 + λ2 − λ2w)

[(
pm+1,0(0)−

pm,0(0)

w

)
b̂(λ1 + λ2 − λ2w)

+λ1

∫ ∞

0

e{λ2w−(λ1+λ2)}tHm−1(t, w)dt

]
, 0 < m < L. (2.9)

H0(0, w) =
w

w − b̂(λ1 + λ2 − λ2w)
[p1,0(0)

+(λ1 + λ2)p0 −
p0,0(0)

w

]
b̂(λ1 + λ2 − λ2w). (2.10)

Let w∗ be the solution of the equation w = b̂(λ1 + λ2 − λ2w). That is, it can

easily be proved by Rouche’s theorem that w = b̂(λ1 + λ2 − λ2w) has an unique
solution within an unit circle |w| = 1. Since H0(0, w) and Hm(0, w)(0 < m < L)
are analytic within and on unit circle |w| = 1, the denominator of the right side
of equations (2.9) and (2.10) must be zero. Thus, we obtain

pm+1,0(0) =
pm,0(0)

w∗ − λ1

w∗

∫ ∞

0

e{λ2w
∗−(λ1+λ2)}tHm−1(t, w

∗)dt. (3.1)

p1,0(0) =
p0,0(0)

w∗ − (λ1 + λ2)p0. (3.2)

By (1.1), the equation (3.2) can be rewritten by

p1,0(0) = (λ1 + λ2)p0

(
1

w∗ − 1

)
. (3.3)

Also, substituting (1.1) and (3.3) into equation (2.10), we obtain
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H0(0, w) =
(w − w∗)b̂(λ1 + λ2 − λ2w)

w∗[w − b̂(λ1 + λ2 − λ2w)]
(λ1 + λ2)p0. (3.4)

In equation (3.1), with m = 1, we obtain p2,0(0) by equation (2.8) and (3.3).
By applying the equations (2.7), (2.8), (2.9) and (2.10) repeatedly, we finally
can obtain pL,0(0) and HL−1(t, w). Therefore, the joint probability generating
function G(x, z, w) is obtained. The probability of empty system p0 also is
determined by the normalization condition (1.10).

From above results, we can also obtain the mean queue length for each type
customers:
(a) The mean queue length (E(N1) ) of type-1 customers

E(N1) =
∂

∂z

[∫ ∞

0

G(x, z, 1)dx · zL
]∣∣∣∣

z=1

+
L−1∑
j=1

j

∫ ∞

0

Hj(x, 1)dx.

(b) The mean queue length (E(N2) ) of type-2 customers

E(N2) =
∂

∂w

∫ ∞

0

G(x, 1, w)dx

∣∣∣∣
w=1

.

3. Conclusion

In this paper, we considered the queueing model with priority scheduling.
Instead of the method of embedded Markov chain, by using the method of sup-
plementary variable by remaining service time, we obtained the probability gen-
erating function for two queue lengths and the remaining service time explicitly.
The motivation for analyzing this queueing model was necessary of traffic control
to support differentiated traffic streams in telecommunication networks. Thus,
we expect the analysis result to be used for optimizing of the network with
appropriate threshold value.
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