• Title/Summary/Keyword: Model Interpretability

Search Result 47, Processing Time 0.025 seconds

Form-finding of lifting self-forming GFRP elastic gridshells based on machine learning interpretability methods

  • Soheila, Kookalani;Sandy, Nyunn;Sheng, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.605-618
    • /
    • 2022
  • Glass fiber reinforced polymer (GFRP) elastic gridshells consist of long continuous GFRP tubes that form elastic deformations. In this paper, a method for the form-finding of gridshell structures is presented based on the interpretable machine learning (ML) approaches. A comparative study is conducted on several ML algorithms, including support vector regression (SVR), K-nearest neighbors (KNN), decision tree (DT), random forest (RF), AdaBoost, XGBoost, category boosting (CatBoost), and light gradient boosting machine (LightGBM). A numerical example is presented using a standard double-hump gridshell considering two characteristics of deformation as objective functions. The combination of the grid search approach and k-fold cross-validation (CV) is implemented for fine-tuning the parameters of ML models. The results of the comparative study indicate that the LightGBM model presents the highest prediction accuracy. Finally, interpretable ML approaches, including Shapely additive explanations (SHAP), partial dependence plot (PDP), and accumulated local effects (ALE), are applied to explain the predictions of the ML model since it is essential to understand the effect of various values of input parameters on objective functions. As a result of interpretability approaches, an optimum gridshell structure is obtained and new opportunities are verified for form-finding investigation of GFRP elastic gridshells during lifting construction.

Experimental Analysis of Bankruptcy Prediction with SHAP framework on Polish Companies

  • Tuguldur Enkhtuya;Dae-Ki Kang
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • With the fast development of artificial intelligence day by day, users are demanding explanations about the results of algorithms and want to know what parameters influence the results. In this paper, we propose a model for bankruptcy prediction with interpretability using the SHAP framework. SHAP (SHAPley Additive exPlanations) is framework that gives a visualized result that can be used for explanation and interpretation of machine learning models. As a result, we can describe which features are important for the result of our deep learning model. SHAP framework Force plot result gives us top features which are mainly reflecting overall model score. Even though Fully Connected Neural Networks are a "black box" model, Shapley values help us to alleviate the "black box" problem. FCNNs perform well with complex dataset with more than 60 financial ratios. Combined with SHAP framework, we create an effective model with understandable interpretation. Bankruptcy is a rare event, then we avoid imbalanced dataset problem with the help of SMOTE. SMOTE is one of the oversampling technique that resulting synthetic samples are generated for the minority class. It uses K-nearest neighbors algorithm for line connecting method in order to producing examples. We expect our model results assist financial analysts who are interested in forecasting bankruptcy prediction of companies in detail.

Evaluation of Interpretability for Generated Rules from ANFIS (ANFIS에서 생성된 규칙의 해석용이성 평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.123-140
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of outstanding performance of control and forecasting accuracy. ANFIS has capability to refine its fuzzy rules interactively with human expert. In particular, when we use initial rule structure for machine learning which is generated from human expert, it is highly probable to reach global optimum solution as well as shorten time to convergence. We propose metrics to evaluate interpretability of generated rules as a means of acquiring domain knowledge and compare level of interpretability of ANFIS fuzzy rules to those of C5.0 classification rules. The proposed metrics also can be used to evaluate capability of rule generation for the various machine learning methods.

  • PDF

Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection (설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형)

  • Gundoo Moon;Kyoung-jae Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.241-265
    • /
    • 2023
  • A corporate insolvency prediction model serves as a vital tool for objectively monitoring the financial condition of companies. It enables timely warnings, facilitates responsive actions, and supports the formulation of effective management strategies to mitigate bankruptcy risks and enhance performance. Investors and financial institutions utilize default prediction models to minimize financial losses. As the interest in utilizing artificial intelligence (AI) technology for corporate insolvency prediction grows, extensive research has been conducted in this domain. However, there is an increasing demand for explainable AI models in corporate insolvency prediction, emphasizing interpretability and reliability. The SHAP (SHapley Additive exPlanations) technique has gained significant popularity and has demonstrated strong performance in various applications. Nonetheless, it has limitations such as computational cost, processing time, and scalability concerns based on the number of variables. This study introduces a novel approach to variable selection that reduces the number of variables by averaging SHAP values from bootstrapped data subsets instead of using the entire dataset. This technique aims to improve computational efficiency while maintaining excellent predictive performance. To obtain classification results, we aim to train random forest, XGBoost, and C5.0 models using carefully selected variables with high interpretability. The classification accuracy of the ensemble model, generated through soft voting as the goal of high-performance model design, is compared with the individual models. The study leverages data from 1,698 Korean light industrial companies and employs bootstrapping to create distinct data groups. Logistic Regression is employed to calculate SHAP values for each data group, and their averages are computed to derive the final SHAP values. The proposed model enhances interpretability and aims to achieve superior predictive performance.

A Study on Effective Interpretation of AI Model based on Reference (Reference 기반 AI 모델의 효과적인 해석에 관한 연구)

  • Hyun-woo Lee;Tae-hyun Han;Yeong-ji Park;Tae-jin Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.411-425
    • /
    • 2023
  • Today, AI (Artificial Intelligence) technology is widely used in various fields, performing classification and regression tasks according to the purpose of use, and research is also actively progressing. Especially in the field of security, unexpected threats need to be detected, and unsupervised learning-based anomaly detection techniques that can detect threats without adding known threat information to the model training process are promising methods. However, most of the preceding studies that provide interpretability for AI judgments are designed for supervised learning, so it is difficult to apply them to unsupervised learning models with fundamentally different learning methods. In addition, previously researched vision-centered AI mechanism interpretation studies are not suitable for application to the security field that is not expressed in images. Therefore, In this paper, we use a technique that provides interpretability for detected anomalies by searching for and comparing optimization references, which are the source of intrusion attacks. In this paper, based on reference, we propose additional logic to search for data closest to real data. Based on real data, it aims to provide a more intuitive interpretation of anomalies and to promote effective use of an anomaly detection model in the security field.

Building a Fuzzy Model with Transparent Membership Functions through Constrained Evolutionary Optimization

  • Kim, Min-Soeng;Kim, Chang-Hyun;Lee, Ju-Jang
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.298-309
    • /
    • 2004
  • In this paper, a new evolutionary scheme to design a TSK fuzzy model from relevant data is proposed. The identification of the antecedent rule parameters is performed via the evolutionary algorithm with the unique fitness function and the various evolutionary operators, while the identification of the consequent parameters is done using the least square method. The occurrence of the multiple overlapping membership functions, which is a typical feature of unconstrained optimization, is resolved with the help of the proposed fitness function. The proposed algorithm can generate a fuzzy model with transparent membership functions. Through simulations on various problems, the proposed algorithm found a TSK fuzzy model with better accuracy than those found in previous works with transparent partition of input space.

Sequence Anomaly Detection based on Diffusion Model (확산 모델 기반 시퀀스 이상 탐지)

  • Zhiyuan Zhang;Inwhee, Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.2-4
    • /
    • 2023
  • Sequence data plays an important role in the field of intelligence, especially for industrial control, traffic control and other aspects. Finding abnormal parts in sequence data has long been an application field of AI technology. In this paper, we propose an anomaly detection method for sequence data using a diffusion model. The diffusion model has two major advantages: interpretability derived from rigorous mathematical derivation and unrestricted selection of backbone models. This method uses the diffusion model to predict and reconstruct the sequence data, and then detects the abnormal part by comparing with the real data. This paper successfully verifies the feasibility of the diffusion model in the field of anomaly detection. We use the combination of MLP and diffusion model to generate data and compare the generated data with real data to detect anomalous points.

A Study on Explainable Artificial Intelligence-based Sentimental Analysis System Model

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.142-151
    • /
    • 2022
  • In this paper, a model combined with explanatory artificial intelligence (xAI) models was presented to secure the reliability of machine learning-based sentiment analysis and prediction. The applicability of the proposed model was tested and described using the IMDB dataset. This approach has an advantage in that it can explain how the data affects the prediction results of the model from various perspectives. In various applications of sentiment analysis such as recommendation system, emotion analysis through facial expression recognition, and opinion analysis, it is possible to gain trust from users of the system by presenting more specific and evidence-based analysis results to users.

A Research on Yield Prediction of Mixed Pastures in Korea via Model Construction in Stages (혼파초지에서 모형의 단계적 적용을 통한 수량예측 연구)

  • Oh, Seung Min;Kim, Moon Ju;Peng, Jinglun;Lee, Bae Hun;Kim, Ji Yung;Kim, Byong Wan;Jo, Mu Hwan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.80-91
    • /
    • 2017
  • The objective of this study was to select a model showing high-levels of interpretability which is high in R-squared value in terms of predicting the yield in the mixed pasture using the factors of fertilization, seeding rate and years after pasture establishment in steps, as well as the climate as a basic factor. The processes of constructing the yield prediction model for the mixed pasture were performed in the sequence of data collection (forage and climatic data), preparation, analysis, and model construction. Through this process, six models were constructed after considering climatic variables, fertilization management, seeding rates, and periods after pasture establishment years in steps, thereafter the optimum model was selected through considering the coincidence of the models to the forage production theories. As a result, Model VI (R squared = 53.8%) including climatic variables, fertilization amount, seeding rates, and periods after pasture establishment was considered as the optimum yield prediction model for mixed pastures in South Korea. The interpretability of independent variables in the model were decreased in the sequence of climatic variables(24.5%), fertilization amount(17.8%), seeding rates(10.7%), and periods after pasture establishment(0.8%). However, it is necessary to investigate the reasons of positive correlation between dry matter yield and days of summer depression (DSD) by considering cultivated locations and using other cumulative temperature related variables instead of DSD. Meanwhile the another research about the optimum levels of fertilization amounts and seeding rates is required using the quadratic term due to the certain value-centered distribution of these two variables.