• Title/Summary/Keyword: Model Feature Map

Search Result 161, Processing Time 0.029 seconds

Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis (소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구)

  • Chang Min Kang;Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.

Query Expansion based on Word Graph using Term Proximity (질의 어휘와의 근접도를 반영한 단어 그래프 기반 질의 확장)

  • Jang, Kye-Hun;Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.37-42
    • /
    • 2012
  • The pseudo relevance feedback suggests that frequent words at the top documents are related to initial query. However, the main drawback associated with the term frequency method is the fact that it relies on feature independence, and disregards any dependencies that may exist between words in the text. In this paper, we propose query expansion based on word graph using term proximity. It supplements term frequency method. On TREC WT10g test collection, experimental results in MAP(Mean Average Precision) show that the proposed method achieved 6.4% improvement over language model.

Analysis of Infiltration Area using Prediction Model of Infiltration Risk based on Geospatial Information (지형공간정보 기반의 침투위험도 예측 모델을 이용한 최적침투지역 분석)

  • Shin, Nae-Ho;Oh, Myoung-Ho;Choe, Ho-Rim;Chung, Dong-Yoon;Lee, Yong-Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.199-205
    • /
    • 2009
  • A simple and effective analysis method is presented for predicting the best infiltration area. Based on geospatial information, numerical estimation barometer for degree of infiltration risk has been derived. The dominant geospatial features influencing infiltration risk have been found to be area altitude, degree of surface gradient, relative direction of surface gradient to the surveillance line, degree of surface gradient repetition, regional forest information. Each feature has been numerically expressed corresponding to the degree of infiltration risk of that area. Four different detection probability maps of infiltration risk for the surveillance area are drawn on the actual map with respect to the numerically expressed five dominant factors of infiltration risks. By combining the four detection probability maps, the complete picture of thr best infiltration area has been drawn. By using the map and the analytic method the effectiveness of surveillance operation can be improved.

A Study on Method of Framework Data Update and Computing Land Change Ratio using UFID (UFID를 이용한 기본지리정보 갱신 및 지형변화율 산출 방안 연구)

  • Kim, Ju Han;Kim, Byung Guk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.157-167
    • /
    • 2006
  • During the first and second NGIS projects by the Korean government, The first one (1995~2000) was limited on constructing geographic information and the second (2001~2005) was focused on circulation and practical use of geoinformation from the result of the first project. In the latter half of 2nd NGIS project, However, the geographic information from the NGIS projects have not been renewed even though there were significant geographical changes. The accurate renewal of geoinformation is a matter of great importance to the next generation industry (e.g. LBS, Ubiquitous, Telematics). In this respect, it is time to update the geographic information in the latter half of the second NGIS project. Therefore, It is not only important to build an accurate geoinformation but also rapid and correct renewal of the geoinformation. NGII (National Geographic Information Institute) has been studying for improvement of digital map that was constructed by the result of the 1st NGIS project. Through the construction of clean digital map, NGII constructed Framework Data to three kinds of formats (NGI, NDA, NRL). Framework Data was contained to other database, and provided the reference system of location or contents for combining geoinformation. Framework Data is consist of Data Set, Data Model and UFID (Unique Feature Identifier). It will be achieved as national infrastructure data. This paper attempts to explore a method of the update to practical framework data with realtime geoinformation on feature's creation, modification and destruction managed by 'Feature management agency' using UFID's process. Furthermore, it suggests a method which can provide important data in order to plan the Framework update with the land change ratio.

Bagging deep convolutional autoencoders trained with a mixture of real data and GAN-generated data

  • Hu, Cong;Wu, Xiao-Jun;Shu, Zhen-Qiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5427-5445
    • /
    • 2019
  • While deep neural networks have achieved remarkable performance in representation learning, a huge amount of labeled training data are usually required by supervised deep models such as convolutional neural networks. In this paper, we propose a new representation learning method, namely generative adversarial networks (GAN) based bagging deep convolutional autoencoders (GAN-BDCAE), which can map data to diverse hierarchical representations in an unsupervised fashion. To boost the size of training data, to train deep model and to aggregate diverse learning machines are the three principal avenues towards increasing the capabilities of representation learning of neural networks. We focus on combining those three techniques. To this aim, we adopt GAN for realistic unlabeled sample generation and bagging deep convolutional autoencoders (BDCAE) for robust feature learning. The proposed method improves the discriminative ability of learned feature embedding for solving subsequent pattern recognition problems. We evaluate our approach on three standard benchmarks and demonstrate the superiority of the proposed method compared to traditional unsupervised learning methods.

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

An Explainable Deep Learning-Based Classification Method for Facial Image Quality Assessment

  • Kuldeep Gurjar;Surjeet Kumar;Arnav Bhavsar;Kotiba Hamad;Yang-Sae Moon;Dae Ho Yoon
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.558-573
    • /
    • 2024
  • Considering factors such as illumination, camera quality variations, and background-specific variations, identifying a face using a smartphone-based facial image capture application is challenging. Face Image Quality Assessment refers to the process of taking a face image as input and producing some form of "quality" estimate as an output. Typically, quality assessment techniques use deep learning methods to categorize images. The models used in deep learning are shown as black boxes. This raises the question of the trustworthiness of the models. Several explainability techniques have gained importance in building this trust. Explainability techniques provide visual evidence of the active regions within an image on which the deep learning model makes a prediction. Here, we developed a technique for reliable prediction of facial images before medical analysis and security operations. A combination of gradient-weighted class activation mapping and local interpretable model-agnostic explanations were used to explain the model. This approach has been implemented in the preselection of facial images for skin feature extraction, which is important in critical medical science applications. We demonstrate that the use of combined explanations provides better visual explanations for the model, where both the saliency map and perturbation-based explainability techniques verify predictions.

Implementation of Management System for Contamination Vulnerability Calibration of the Ground Water by an Object-oriented Geographic Data Model (객체지향 지리 데이터 모델에 의한 지하수의 오취약성 분석을 위한 관리시스템 구현)

  • Lee, Hong-Ro
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.101-112
    • /
    • 2003
  • This paper designs and implements the management system that can calibrate the contamination vulnerability of the ground water, using an object oriented data model. Geographic-objects are specified by features extracted from an applicable geographic domain, and geographic-fields are defined by chemical factors extracted from each driven water. To show the topological relationships among the geographic-objects and the geographic-fields, this paper attach the weight and the ratio of the drastic model to chemical factors represented on the land use digital map and the ground water digital map. The geographic feature class, administrative boundary class, land use class and driven water class consist of a class composition hierarchy for evaluating the convenient contamination vulnerability calibration with spatial relationships among the well objects. Therefore, this management system for evaluating the contamination vulnerability can also contribute to the application of other natural environments.

  • PDF

Application of Statistical and Machine Learning Techniques for Habitat Potential Mapping of Siberian Roe Deer in South Korea

  • Lee, Saro;Rezaie, Fatemeh
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The study has been carried out with an objective to prepare Siberian roe deer habitat potential maps in South Korea based on three geographic information system-based models including frequency ratio (FR) as a bivariate statistical approach as well as convolutional neural network (CNN) and long short-term memory (LSTM) as machine learning algorithms. According to field observations, 741 locations were reported as roe deer's habitat preferences. The dataset were divided with a proportion of 70:30 for constructing models and validation purposes. Through FR model, a total of 10 influential factors were opted for the modelling process, namely altitude, valley depth, slope height, topographic position index (TPI), topographic wetness index (TWI), normalized difference water index, drainage density, road density, radar intensity, and morphological feature. The results of variable importance analysis determined that TPI, TWI, altitude and valley depth have higher impact on predicting. Furthermore, the area under the receiver operating characteristic (ROC) curve was applied to assess the prediction accuracies of three models. The results showed that all the models almost have similar performances, but LSTM model had relatively higher prediction ability in comparison to FR and CNN models with the accuracy of 76% and 73% during the training and validation process. The obtained map of LSTM model was categorized into five classes of potentiality including very low, low, moderate, high and very high with proportions of 19.70%, 19.81%, 19.31%, 19.86%, and 21.31%, respectively. The resultant potential maps may be valuable to monitor and preserve the Siberian roe deer habitats.

Dilated convolution and gated linear unit based sound event detection and tagging algorithm using weak label (약한 레이블을 이용한 확장 합성곱 신경망과 게이트 선형 유닛 기반 음향 이벤트 검출 및 태깅 알고리즘)

  • Park, Chungho;Kim, Donghyun;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.414-423
    • /
    • 2020
  • In this paper, we propose a Dilated Convolution Gate Linear Unit (DCGLU) to mitigate the lack of sparsity and small receptive field problems caused by the segmentation map extraction process in sound event detection with weak labels. In the advent of deep learning framework, segmentation map extraction approaches have shown improved performance in noisy environments. However, these methods are forced to maintain the size of the feature map to extract the segmentation map as the model would be constructed without a pooling operation. As a result, the performance of these methods is deteriorated with a lack of sparsity and a small receptive field. To mitigate these problems, we utilize GLU to control the flow of information and Dilated Convolutional Neural Networks (DCNNs) to increase the receptive field without additional learning parameters. For the performance evaluation, we employ a URBAN-SED and self-organized bird sound dataset. The relevant experiments show that our proposed DCGLU model outperforms over other baselines. In particular, our method is shown to exhibit robustness against nature sound noises with three Signal to Noise Ratio (SNR) levels (20 dB, 10 dB and 0 dB).