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Abstract 

 
While deep neural networks have achieved remarkable performance in representation 
learning, a huge amount of labeled training data are usually required by supervised deep 
models such as convolutional neural networks. In this paper, we propose a new 
representation learning method, namely generative adversarial networks (GAN) based 
bagging deep convolutional autoencoders (GAN-BDCAE), which can map data to diverse 
hierarchical representations in an unsupervised fashion. To boost the size of training data, to 
train deep model and to aggregate diverse learning machines are the three principal avenues 
towards increasing the capabilities of representation learning of neural networks. We focus 
on combining those three techniques. To this aim, we adopt GAN for realistic unlabeled 
sample generation and bagging deep convolutional autoencoders (BDCAE) for robust 
feature learning. The proposed method improves the discriminative ability of learned feature 
embedding for solving subsequent pattern recognition problems. We evaluate our approach 
on three standard benchmarks and demonstrate the superiority of the proposed method 
compared to traditional unsupervised learning methods. 
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1. Introduction 

Deep neural networks (DNNs) have progressed rapidly in recent years and have been 

applied successfully to many computational tasks, including speech recognition, natural 
language processing (NLP), information retrieval, computer vision, and image analysis [1-7]. 
In the fields of computer vision, the most relevant procedures of the winners follow three 
main avenues: extending the training data, building ensembles of learning machines, and 
constructing DNNs. 

Supervised learning methods such as convolutional neural networks (CNN), however, 
require large quantities of labeled data that can be difficult to obtain. Thus, building a robust 
system that uses unsupervised learning is valuable. Unsupervised learning methods 
determine intrinsic representations that preserve the essential aspects of unlabeled data. Such 
methods are typically used to extract useful information and remove redundancies in the raw 
data. Some meaningful features like image edges and color can be extracted from raw 
images with the unsupervised learning methods such as spatial pyramid matching [8] and 
bag of visual words [9]. These shallow models can be stacked to form a deep model that is 
capable of extracting abstract features like contours [10, 11].  

In recent years, CNN [12, 13] has become one of the most successful deep models for 
automatically extracting the hierarchical and discriminative features in an end-to-end 
training manner. CNNs show superior performance on visual recognition problems in 
particular. The success of CNN comes from its deep structure and the use of massive training 
data, which allow CNN to learn meaningful hierarchical representations and improve the 
performance of subsequent recognition tasks [14, 15]. However, a large number of labeled 
data are usually expensive to obtain, and the expense limits wider use of this supervised deep 
model.  

As a result, explorations of unsupervised methods to learn hierarchical and intrinsic 
representations from the unlabeled data is valuable. Stacked autoencoders (SAEs) [16, 17] is 
one of the typical deep models used for unsupervised feature learning. It stacks shallow 
autoencoders to form a deep model that learns the latent representations in the input by 
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reconstructing itself layer by layer. Shin et al. [18] applied stacked sparse autoencoders 
(SSAEs) to recognize medical images with outstanding improvements in recognition 
performance. Vincent et al. [19, 20] introduced denoising autoencoders (DAE) that learns the 
features in noisy data by adding random noise to the input layers and reconstructing the clean 
ones at the training stage. DAE can also be stacked to form a deep unsupervised network for 
learning deep representations. Masci et al. [21] presented stacked convolutional 
autoencoders (SCAE) to initialize the weights of the deep models and achieved excellent 
performance. In view of the success of these deep models and convolutional architectures, 
we propose deep convolutional autoencoders (DCAE) to quickly predict latent feature maps. 

The key to the success of deep feature learning is big data. Many classifiers use 
techniques to increase the number of training examples. Date augmentation often serves as a 
regularizer to prevent overfitting in deep learning. An automatic image generator can be 
constructed from generative adversarial networks (GANs) [22]. GANs learn the manifold 
structure of the data and is able to generate realistic data that has the same distribution as the 
real one in an unsupervised manner. GAN-generated data can augment the training dataset 
and regularize the discriminative feature learning. When the deep features are learned from 
the boosted training dataset and the deep convolutional autoencoders, the whole model 
shows improved performance for subsequent recognition tasks. 

Almost all of the winning solutions in the ImageNet Large Scale Visual Recognition 
Challenge [23] from 2012 to 2017 are ensembles of CNNs. Bootstrap Aggregation (Bagging) 
[24-26] is the best-known method in the independent ensemble framework. Bagging reduces 
variance and model variability over different data sets from a given distribution, which 
reduces the overall generalization error and improves stability as demonstrated in numerous 
published studies. Bagging creates several bootstrapping subsets of the training dataset and 
then employs these subsets to train separate models. Some of the original samples may not 
appear at all and some others may appear more than once since the data are sampled with 
replacement. After each individual prediction is obtained, the bagging method combines 
them using a voting scheme to make the final recognition. As these training subsets are 
slightly different from each other, different focus and parameters are trained on different 
subsets and thereby receive different prediction errors. Alternatively, each learning machine 
is built independently. By combining these individuals together, we expect an improved 
performance of the learning machine and a decrease in the total prediction error. In the real 
world, a human being usually considers multiple possibilities before making a final decision. 
We weigh these individual possibilities and combine them to make the final decision. 

In previous work, the bagging method performed well for unstable predictors. 
Autoencoder-based prediction models are also unstable predictors, it is intuitive to assume 
that applying the bagging method to autoencoder-based models could improve classification 
performance. Inspired by this assumption, we propose a bagging deep convolutional 
autoencoder-based (BDCAE) prediction architecture for robust feature learning. The 
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experimental results on commonly used datasets also show its promising potential. We adopt 
a bagging strategy to fuse multiple deep convolutional autoencoders to reduce the 
generalization error, thus improving the classification accuracy further. We summarize our 
contributions as follows: 
(1) We propose a novel framework, GAN-BDCAE, for robust and discriminative feature 

learning in an unsupervised fashion. 
(2) The integration of additionally generated data regularizes the process of discriminative 

feature learning. Experiments on image classification tasks validate the effectiveness of 
the GAN-generated data for improving the generalization capability of the learned 
features. 

(3) A demonstration that the learned feature of the proposed method GAN-BDCAE has a 
consistent improvement over three image benchmark datasets when compared with other 
traditional feature learning methods. It is also a flexible and effective framework for 
semi-supervised learning when there are at least a few labeled data items. 
The rest of this paper is organized as follows: in Section 2, we present the proposed 

GAN-BDCAE framework. We show our experimental results in Section 3 and draw a 
conclusion in Section 4. 

2. The Proposed Method 

2.1 Architecture overview  

Image representation plays a key role in image recognition tasks [27]. To improve the ability 
of image representation, we propose a new method that uses three techniques. The first 
technique improves the diversity of the training data with a GAN. The second technique 
learns the hierarchical representation of the augmented training dataset with deep 
convolutional autoencoders (DCAE). The third technique boosts the robustness of predictors 
by bagging. The architecture of our proposed method GAN-BDCAE is shown in Fig. 1. 
During the unsupervised feature learning step, we train our model to obtain the data structure 
and improve the generalizability of the method.  We then fine-tune the whole model with N 
labeled real data and assemble them with bagging to achieve a robust recognition system. 
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Fig. 1. Architecture of our proposed method GAN-BDCAE 

2.2 Data augmentation using GAN 

The GAN consists of two sub-networks: a generator and a discriminator. The discriminator 
determines whether a sample is generated or real while the generator produces samples to 
deceive the discriminator. Goodfellow et al. [28] first proposed GANs to generate images 
and gain insight into neural networks. The deep convolutional GAN adds refinements to 
improve training stability. The discriminator of Deep Convolutional GAN can serve as a 
robust feature extractor. Salimans et al. [29] achieved state-of-the-art results for 
semi-supervised classification and improved the visual quality of GANs. InfoGAN [30] 
learns interpretable representations by introducing latent codes. GANs also demonstrate 
potential in generating images for specific applications. Pathak et al. [31] proposed an 
encoder-decoder method for image inpainting (reconstructing missing or deteriorated parts of 
an image) using GANs to generate the images. Similarly, Yeh et al. [32] improved inpainting 
performance by introducing two loss types. Our own aim in this work is to use a deep 
convolutional GAN model to generate realistic unlabeled samples and to show that these 
samples improve discriminative feature learning. 

2.3 Deep convolutional autoencoders 

One of our aims is to use generated data to improve discrimination when learning features. 
Using deep convolutional autoencoders as a feature learning machine, we design the deep 
convolutional autoencoders as convolutional stacked of deep encoder and decoder layers. 
The basic autoencoder component, with its encoder-decoder structure, has been widely used 
as an unsupervised feature learning tool in other research. In the encoding phase, the 
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machine transforms the input space into an application-specific latent space. The decoding 
phase uses this latent representation to reproduce the original data [33]. To encode data as 
robust and discriminative representations, we train the autoencoder to extract generally 
useful features, to remove redundancies in the inputs, and to preserve essential properties of 
the input data. The mathematical representation of the autoencoders is given by 

                        ,ˆ= ( )w bx f x x≈                             (1) 

where [0,1]nx∈ represents the input data and 1 2{ , }W W W=  and 1 2{ , }b b b=  denote the 

connecting weights and the layer biases respectively. First, the autoencoder maps x to the 

hidden representation h through an encoder mapping parameterized by 1 1 1{ , }W bθ =  and 

defined as 

1 1 1( ) ( )h g x W x bθ σ= = +                             (2) 

where '[0,1]nh∈ , '
1

n nW R ×∈ , ' 1
1

nb R ×∈  and ( )xσ  is the logistic sigmoid function, 

1( )
1 xx

e
σ −=

+
. A similar decoder mapping function parameterized by 2 2 2{ , }W bθ =  maps 

the hidden representation h back to a reconstructed vector ˆ [0,1]nx∈ : 

2 2 2ˆ ( ) ( )x g x W h bθ σ= = +                             (3) 

where '
2

n nW R ×∈  and 1
2

nb R ×∈ . Basic autoencoders training consists of finding 

parameters of the model in Eq. (1), that is, 1 2{ , }θ θ θ= . In order to optimize these 

parameters, the objective function of the autoencoders is to minimize the average 
reconstruction error. 

However, the fully connected AEs ignore the 2-D image structure. Since the inputs are 
images, it makes sense to use convolutional networks for encoding and decoding. In practical 
settings, autoencoders applied to images are almost always convolutional autoencoders 
(CAEs) for the sake of performance. CAEs are quite similar to conventional AEs but differ 
by having their weights shared among all locations in the input to preserve spatial locality. 
For a mono-channel input x, the latent representation of the j-th feature map is given by 

1 1( )j j jh x W bσ= ∗ +                             (4) 
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where the bias 1b  is broadcast to the whole map, σ  is an activation function (rectified 

linear units in our experiments), and * denotes the 2D convolution. We use a single bias per 
latent map, as we want each filter to specialize on features of the whole input (One bias per 
pixel would introduce too many degrees of freedom for a fully connected AE). The 
reconstruction is obtained using 

2 2ˆ ( * )j j

j H
x h W bσ

∈

= +∑                             (5) 

where again there is one bias per input channel. H denotes the group latent feature maps. The 
cost function to be minimized is the mean squared error (MSE): 

( ) ( ) 2

1

1 ˆ( , ) || ||
2

n
i i

i
J W b x x

n =

= −∑                             (6) 

where i denotes the i-th sample and n is the total number of the training data. The weights 
and bias can be updated using the stochastic gradient descent method. 

2.4 Bagging the DCAE-based classifiers 

First, the bagging step processes the training dataset (consisting of real data and realistic 
GAN-generated data) by bootstrapping it. Given a dataset, the system builds bootstrap 
subsets by randomly sampling the new training dataset with replacement. Because of the 
replacement sampling strategy, some data may not be picked at all and others may be picked 
more than once. Each bootstrap subset will contain about 67% of the total training data. Next, 
each bootstrap subset is used to train a deep convolutional autoencoder-based classifier. At 
the conclusion, there are k DCAE-based classification models with different initial training 
weights used to initialize the individual neural networks. The outputs of the k models are all 
potentially different. The final model output is computed by a majority vote within the 
recognition task. 

Once the k DCAEs are trained on the k different subsets, all information will be stored 
in the parameters of each DCAE. We train a softmax regression model based on top of the 
coder of each DCAE for the multi-class prediction. The class label y takes more than two 

values, where 1, 2,...,y c∈  and c is the number of the class labels. For an example x, we 

estimate the probabilities of each class that x belongs to as follows: 
T
1

T
2

T

T1

( 1| ; )
( 2 | ; ) 1( )

( | ; )
j

c

x
i

x
i

c
x

xji

ep y x
p y x eh x

e
p y c x e

θ

θ

θ
θ

θ

θ
θ

θ =

 =    =   = =        =   
∑



                            (7) 



5434                                 Hu et al.: Bagging deep convolutional autoencoders trained with a mixture of real data 
and GAN-generated data 

where 
T

1
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j
eθ

=
∑  is a normalized term, and 1 2, ,..., cθ θ θ  are the model parameters. 

Given the labeled training set 1{ , }N
i i ix y = , 1,2,...,iy c∈ , the solution of the softmax 

regression is obtained by minimizing the following optimization problem: 
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where { }I •  is an indicator function with a value of 1 if the expression is true, and 0 

otherwise. Once the model is trained, we compute the probability of sample x belonging to a 
label j using Eq. (7) and assign its class label via 
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                            (9) 

We obtain the k hypothesis function 1 2, ,..., kp p p  to represent the k predictors and 

give a prediction. Each trained model has identified different features of interest. So the 

predicted labels 1 2( ), ( ),..., ( )kp x p x p x  will not always be the same. In this paper, we set k 

to 3. For a possible label y within the set Y of all possible labels, a hypothesis function ip  

for prediction model i, and combined prediction function *p  we combine the prediction in 

the major voting process according to 

: ( )
*( ) arg max 1

i
y Y i p x y

p x
∈ =

= ∑                             (10) 

2.5 Implementation Details 

We have implemented the proposed framework GAN-BDCAE using the Tensorflow and 
Keras libraries. We used Tensorflow for generating the GAN-based data and Keras for 
feature learning, subsequent prediction tasks, and bagging. The framework includes six steps 
as follows: 
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(1) Generate realistic dataset GB  with deep convolutional GAN. 
†{ }G
jB x= , 1, 2,...,j m= : A set of generated realistic data. 

(2) Form a new training dataset B combining the generated data GB  and real data RB . 
†{ , } { , }G R

i jB B B x x= = , 1, 2,...,i n= : A new training dataset which consists of real 

data ix  and generated data †
jx . 

(3) Generate k bootstrap subsets with a mixture of real data and GAN-generated data. 

iB , 1, 2,...,i k= : A set of bootstrapping subsets from the augmented new training data 

set B. 
(4) Train k different deep convolutional autoencoders with Eq. (6) for feature learning on the 

k bootstrap subsets. 

( )ig x , 1,2,...,i k= , ix B∈ : Train DCAE-1, DCAE-2, …, DCAE-k based on the k 

different bootstrap subset iB . 

(5) Using the features learned with DCAE, train the k different classifiers with N real labeled 
samples from the real dataset. Then fine-tune the k different DCAE-based classification 
model. 

( , )if x y , 1,2,...,i k= , ( , ) Rx y B∈ : Train the k classifiers and fine-tune each 

DCAE-based classifier with N labeled samples. 
(6) Aggregate k outputs for the final prediction. 

Aggregate the outputs of learners based on majority voting by using Eq. (10). 

3. Experiments  

3.1 Data augmentation by GAN 

In this subsection, we present our experiment using a GAN-based generator to synthesize 
realistic data for comparison with real data from three benchmark datasets: MNIST [34], 
SVHN [35] and CIFAR-10 [36]. We synthesized new images by inputting 100-dimensional 
random vectors in which each entry falls within [-1, 1]. 

MNIST is a well-known handwritten digit dataset. In the first experiment, we trained 
the proposed method on the standard benchmark dataset MNIST. This dataset contains digits 
0 to 9(10-classes), consisting of 28*28 pixel black and white images. There are 60,000 
training images and 10,000 test images. Before we input these images to our model, we 
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scaled the pixel values into the range [0, 1]. Fig. 2 provides samples of both the original 
MNIST and GAN-generated data. 

 

      
            (a) Original images                          (b) Generated images 

Fig. 2. Samples of (a) original images and (b) GAN-generated images from the MNIST dataset 
 

SVHN is a real-world dataset for evaluating image recognition performance, with 
73,257 training points and 26,032 test points. Fig. 3 show samples of actual SVHN and 
GAN-generated data. 

 

       
  (a) Original images                         (b) Generated images 

Fig. 3. Samples of (a) some original images and (b) GAN-generated images from the SVHN dataset 
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CIFAR-10 is an established computer vision dataset used for testing object recognition. 
It consists of 60,000 32*32 color images containing 1-10 object classes, with 6,000 images 
per class. The CIFAR-10 dataset is split into six batches, each with 10,000 images containing 
about 1,000 randomly-selected images from each image class. We separated the CIFAR-10 
dataset into five batches for training and one batch for testing. Fig. 4 compares sample 
CIFAR-10 and GAN-generated images.  

 

    
   (a) Original images                       (b) Generated images 

Fig. 4. Samples of (a) original images and (b) GAN-generated images from the CIFAR-10 dataset 
 

3.2 Deep feature learning 

To test deep feature learning, we fed generated data into the GAN-BDCAE model and used 
the new training dataset to learn deep features. We configured the GAN-BDCAE with k 
individuals. The k DCAEs had the same architecture but different initial parameters and 
training subsets. The feature learning machine used deep convolutional autoencoders. The 
encoder consisted of a stack of convolutional and max pooling layers (for spatial 
downsampling), while the decoder included a stack of convolutional and upsampling layers. 
Table 1 and 2 show details of our DCAE models. The DCAE in Table 1 was used for deep 
feature learning with the MNIST dataset, while the DCAE in Table 2 was used with the 
SVHN and CIFAR-10 dataset. We then trained these DCAEs for latent representations and 
reproduced the input data. Fig. 5 compares some original images and their corresponding 
reconstructions from all 3 datasets.  
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Table 1. Architecture of DCAE on the MNIST dataset 
Stage Layer Layer Type Size Output Shape 

 
 
 

Encoder 

0 Input  (1,28,28) 
1 Convolution+ReLU 16,3×3filters (16,28,28) 
1 Max Pooling 2×2,stride2 (16,14,14) 
2 Convolution+ReLU 32,3×3filters (32,14,14) 
2 Max Pooling 2×2,stride2 (32,7,7) 
3 Convolution+ReLU 64,3×3filters (64,7,7) 
3 Max Pooling 2×2,stride2 (64,4,4) 

 
 
 

Decoder 

4 Convolution+ReLU 64,3×3filters (64,4,4) 
4 Upsampling 2×2,stride2 (64,8,8) 
5 Convolution+ReLU 32,3×3filters (32,8,8) 
5 Upsampling 2×2,stride2 (32,16,16) 
6 Convolution+ReLU 16,3×3filters (64,14,14) 
6 Upsampling 2×2,stride2 (64,28,28) 
7 Convolution+Sigmoid 1,3×3filters (1,28,28) 

 
Table 2. Architecture of DCAE on the SVHN and CIFAR-10 dataset 

Stage Layer Layer Type Size Output Shape 
 0 Input  (3,32,32) 

1 Convolution+ReLU 32,3×3filters (32,32,32) 
1 Max Pooling 2×2,stride2 (32,16,16) 
2 Convolution+ReLU 64,3×3filters (64,16,16) 
2 Max Pooling 2×2,stride2 (64,8,8) 
3 Convolution+ReLU 128,3×3filters (128,8,8) 
3 Max Pooling 2×2,stride2 (128,4,4) 
4 Convolution+ReLU 256,3×3filters (256,4,4) 
4 Max Pooling 2×2,stride2 (256,2,2) 

 5 Convolution+ReLU 256,3×3filters (256,2,2) 
5 Upsampling 2×2,stride2 (256,4,4) 
6 Convolution+ReLU 128,3×3filters (128,4,4) 
6 Upsampling 2×2,stride2 (128,8,8) 
7 Convolution+ReLU 64,3×3filters (64,8,8) 
7 Upsampling 2×2,stride2 (64,16,16) 
8 Convolution+ReLU 32,3×3filters (32,16,16) 
8 Upsampling 2×2,stride2 (32,32,32) 
9 Convolution+Sigmoid 3,3×3filters (3,32,32) 
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(a) 

 
(b) 

 
(c) 

   Fig. 5. Some original images (top lines) and reconstruction images (bottom lines) using DCAE 
 on MNIST (a), SVHN (b) and CIFAR-10 (c) dataset. 

3.2 Classification Performance Evaluation 

In this section, we evaluate whether the features learned by our proposed method improve 
image classification performance as compared with other deep learning methods. 

3.2.1 Comparison Method 

We compare our proposed GAN-BDCAE with the following methods. 
 Convolutional deep belief networks [37]: a traditional unsupervised feature learning 

algorithm with convolutional deep belief networks 
 Stacked denoising autoencoders [20]: a traditional autoencoder method for unsupervised 

feature learning 
 Deep NCAE [38]: a part-based representation learning machine with sparse 

autoencoders having nonnegativity constraints 
 k-sparse autoencoder [39]: an autoencoder-based representation learning system that 

encourages sparsity 
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 Convolutional triangle k-means [40]: a method for selecting local receptive fields in 
deep networks 

 Conv-WTA [41]: a winner-take-all method for learning sparse representations in an 
unsupervised fashion 

3.2.2 Classification 

In all of the experiments in this subsection, we compared the performance of GAN-BDCAE 
on the three benchmark datasets. We set k to 3 and used majority voting to aggregate the k 
DCAE outputs. We fine-tuned the DCAE filters with N-labeled data at the prediction stage. 

First, we evaluated the effect of using different numbers of GAN-generated images 
during training. We expected the proposed method to learn more general knowledge as the 
number of unlabeled images increased. As shown in Table 3, the classification performance 
of our proposed method improved after adding some GAN-generated data to the training 
dataset. We obtained the best results when we added 50k, 80k and 50k generated inputs to the 
MNIST, SVHN, and CIFAR-10 datasets, respectively. Peak performance was activated when 
a nearly equal number of generated inputs were added to the real dataset. We observed 
improvements of 0.18% (from 0.87% to 0.69%), 1.42% (from 7.84% to 6.42%) and 2.14% 
(from 18.95% to 16.81%) on the three datasets, respectively. 

 
Table 3. The GAN-BDCAE classification error (%) with #numbers of additionally  

generated data on the three datasets 

# of generated data 0 1k 4k 10k 20k 50k 80k 100k 
MNIST 0.87 0.86 0.86 0.77 0.76 0.69 0.71 0.72 
SVHN 7.84 7.68 7.48 7.18 7.04 6.58 6.42 6.46 

CIFAR-10 18.95 18.81 18.64 17.55 17.18 16.81 17.07 17.11 
 
Next, we investigated the performance of GAN-BDCAE with N labeled real data. We 

first trained a GAN-BDCAE system on the new training dataset to learn the unsupervised 
features. We then trained the k softmax classifiers and fine-tuned the whole model by using 
N labeled samples. Finally, we compared the results with the traditional methods. Tables 4-6 
show the results: our GAN-BDCAE method offered the best performance on all three 
benchmark datasets. With fewer labeled data inputs (1k and 4k), our method also achieved a 
significant improvement in these image recognition tasks. To compare the performance of 
the traditional methods with and without GAN-generated data, we added 50k, 80k and 50k 
generated data to train these methods. We observed that the GAN-generated samples 
improved the performance of these traditional unsupervised methods on the image 
classification task. 
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Table 4. Test error (%) of GAN-BDCAE trained with N labeled samples on MNIST 
Algorithm N=1k N=4k ALL 

Deep NCAE - - ~2.09 
Stacked Denoising Autoencoders - - 1.28 

Convolutional deep belief networks - - 0.82 
k-sparse autoencoder - - 1.35 
GAN- Deep NCAE - - 1.98 

GAN- Stacked Denoising Autoencoders - - 1.11 
GAN- Convolutional deep belief networks - - 0.77 

GAN- k-sparse autoencoder - - 1.19 
DCAE 2.36 1.76 0.99 

BDCAE 2.22 1.74 0.87 
GAN-BDCAE 1.34 1.28 0.69 

 
 

Table 5. Test error (%) of GAN-BDCAE trained with N labeled samples on SVHN 
Algorithm N=1k N=4k ALL 

Convolutional Triangle k-means - - 9.4 
Conv-WTA - - 11.5 

Stacked Conv-WTA 23.8 - 6.9 
GAN- Conv-WTA - - 9.9 

GAN- Stacked Conv-WTA - - 6.6 
DCAE 29.1 17.5 7.5 

BDCAE 24.2 16.2 7.3 
GAN-BDCAE 21.7 13.3 6.4 

 
Table 6. Test error (%) of GAN-BDCAE trained with N labeled samples on CIFAR-10 

Algorithm N=1k N=4k ALL 
CDBN - - 21.1 

Conv-WTA - - 19.9 
Convolutional Triangle k-means - - 18.0 

GAN- Conv-WTA - - 18.4 
DCAE 47.7 32.2 19.8 

BDCAE 45.1 30.4 18.5 
GAN-BDCAE 40.9 27.2 16.8 
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4. Conclusion 

In this paper, we presented a new unsupervised learning framework, namely GAN-BDCAE, 
for discriminative feature learning. This model can learn robust and discriminative feature 
representations from a mixture of real and generated data. We showed that the 
GAN-generated images effectively regularize BDCAEs during training. We mixed unlabeled 
GAN-generated images with real images for simultaneous semi-supervised learning. Albeit 
simple, the research results demonstrate consistent performance improvements over 
unsupervised learning methods, which offer support for the practical use of GAN-generated 
data. The BDCAEs method also shows its ability to learn robust features and improve the 
stability of single deep convolutional autoencoders. These facts reveal clear opportunities for 
designing more powerful representation learning by combining different improved 
techniques. 

In the future, we will continue to investigate whether integrating GAN-generated 
images with better quality into unsupervised feature learning yields better performance for 
pattern recognition. We will also investigate the effects of BDCAEs on representation 
learning, including the influence of the architecture and the number of individuals. 
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