• Title/Summary/Keyword: Model Ensemble

Search Result 638, Processing Time 0.032 seconds

Climate Information and GCMs Seasonal Forecasts Based Short-term Forecasts for Drought (기상자료 및 GCMs 예측결과를 활용한 단기 가뭄 예측)

  • Kwon, Hyun-Han;Moon, Jang-Won;Song, Hyun-Sup;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1186-1190
    • /
    • 2009
  • 강수량이 예년에 비해 적은 양상은 여름강수량에 대한 부족으로 기인한다. 우리나라의 경우 장마기간의 강수와 태풍으로 인해 발생하는 강수가 전체 강수량에 많은 부분을 차지하고 있기 때문에 여름강수량이 적게 나타나게 되면 가을 가뭄 및 봄 가뭄에 대한 발생 압력도 그 만큼 커지게 되는 것이 일반적이다. 기존 연구들이 단순히 강수량을 가정하거나 시나리오를 기반으로 가뭄을 전망하는데 그치고 있으나 본 연구에서는 2009년 가뭄전망을 위해서 전지구기후모형(GCMs)의 3개월 기상예측 결과를 활용하고자 한다. 즉, APEC 기후예측 센터로부터 제공 받은 3개월 GCM Multi-Model Ensemble 예측 결과를 바탕으로 가뭄상태를 평가하였다. 따라서 본 연구의 목적은 Large-scale의 기후예측 시스템과 기상관측지점의 강수 및 온도를 연결시켜 가뭄을 전망할 수 있는 시스템을 구축하는데 있다. GCM 예측 결과를 바탕으로 2009년도 매월 강수량 및 평균 온도를 추정하여 PDSI 가뭄지수 산정에 이용하였다.

  • PDF

Element-free simulation of dilute polymeric flows using Brownian Configuration Fields

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • The computation of viscoelastic flow using neural networks and stochastic simulation (CVFNNSS) is developed from the point of view of Eulerian CONNFFESSIT (calculation of non-Newtonian flows: finite elements and stochastic simulation techniques). The present method is based on the combination of radial basis function networks (RBFNs) and Brownian configuration fields (BCFs) where the stress is computed from an ensemble of continuous configuration fields instead of convecting discrete particles, and the velocity field is determined by solving the conservation equations for mass and momentum with a finite point method based on RBFNs. The method does not require any kind of element-type discretisation of the analysis domain. The method is verified and its capability is demonstrated with the start-up planar Couette flow, the Poiseuille flow and the lid driven cavity flow of Hookean and FENE model materials.

Analysis of Mechanical Behavior of Nanowire by $Nos\acute{e}-Poincar\acute{e}$ Molecular Dynamics Simulation ($Nos\acute{e}-Poincar\acute{e}$ 분자 동역학 알고리즘을 이용한 나노 와이어의 역학적 거동 해석)

  • Lee, Byeong-Yong;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.506-511
    • /
    • 2007
  • Mechanical behavior of copper nanowire is investigated. An FCC nanowire model composed of 1,408 atoms is used for MD simulation. Simulations are performed within NVT ensemble setting without periodic boundary conditions. $Nos\acute{e}-Poincar\acute{e}$ MD algorithm is employed to guarantee preservation of Hamiltonian and temperature. Numerical tensile tests of Nanowire are carried out with constant strain rate. Additionally, temperature and strain rate effects are considered. Stress-strain curve is constructed from the calculated Cauchy stresses and specified strain values. In (22,4,4) Copper nanowire, non-linear behavior appears around ${\epsilon}\simeq0.09.$ At this instance, starting of structural reorientations are observed. At the onset of reorientation, the modulus characteristics are also investigated.

  • PDF

Proper Orthogonal Mode Extraction of AFM Microcantilevers in Dynamic Mode (동적모드 AFM 마이크로캔틸레버의 적합직교모드 추출)

  • Cho, Hong-Mo;Hong, Sang-Hyuk;Kwon, Won-Tae;Lee, Soo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.264-268
    • /
    • 2007
  • Proper orthogonal decomposition(POD) is a method for extracting bases for modal decomposition from the ensemble of signals. We verified the connection of the proper orthogonal modes(POMs) and the linear normal modes(LNMs) through MATLAB simulation for the simple cantilever and AFM microcantilever models. Using the POMs, we can analyze and model effectively the dynamic mode of AFM microcantievers.

  • PDF

Introduction to Gene Prediction Using HMM Algorithm

  • Kim, Keon-Kyun;Park, Eun-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.489-506
    • /
    • 2007
  • Gene structure prediction, which is to predict protein coding regions in a given nucleotide sequence, is the most important process in annotating genes and greatly affects gene analysis and genome annotation. As eukaryotic genes have more complicated structures in DNA sequences than those of prokaryotic genes, analysis programs for eukaryotic gene structure prediction have more diverse and more complicated computational models. There are Ab Initio method, Similarity-based method, and Ensemble method for gene prediction method for eukaryotic genes. Each Method use various algorithms. This paper introduce how to predict genes using HMM(Hidden Markov Model) algorithm and present the process of gene prediction with well-known gene prediction programs.

  • PDF

CONTRIBUTIONS TO THE COSMIC RAY FLUX ABOVE THE ANKLE: CLUSTERS OF GALAXIES

  • KANG HYESUNG;RACHEN JORG P.;BIERMANN PETER L.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.271-272
    • /
    • 1996
  • Assuming that particles can be accelerated to high energies via diffusive shock acceleration process at the accretion shocks formed by the infalling flow toward the clusters of galaxies, we have calculated the expected spectrum of high-energy protons from the cosmological ensemble of the cluster accretion shocks. The model with Jokipii diffusion limit could explain the observed cosmic ray spectrum near $10^{19}eV$ with reasonable parameters and models if about $10^{-4}$ of the infalling kinetic energy can be injected into the intergalactic space as the high energy particles.

  • PDF

Approximation for the coherent structures in the planar jet flow (평면 제트류 응집구조의 근사적 표현에 관한 연구)

  • 이찬희;이상환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.751-762
    • /
    • 1995
  • The snapshot method is introduced to approximate the coherent structures of planar jet flow. The numerical simulation of instantaneous flow field is analyzed by SIMPLE algorithm. An ensemble of realizations is collected using a sampling condition that corresponds to the passage of a large scale vortex at positions 4 and 6 diameters downstream from the nozzle. With snapshot mothod we could treat the data efficiently and approximate coherent structures inhered in the planar jet flow successfully 94% of total turbulent kinetic energy with 10 terms of Karhunen-Loeve expansions. Finally, In accordance with the recent trend to try to explain and model turbulence phenomena with the existence of coherent structures, in the present study, we express the underlying coherent structures of planar jet flow in the minimum number of modes by calculating Karhunen-Loeve expansions in order to improve to understanding of jet flow and to make the information storage and management in computers easier.

Analysis of Mechanical Behavior of Nanowire by Molecular Dynamics Simulation (분자동역학을 이용한 나노 와이어의 역학적 거동 해석)

  • Lee, Byeong-Yong;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.433-438
    • /
    • 2007
  • Mechanical behavior of copper Nanowire is investigated, An FCC Nanowire model composed of 1,408 atoms is used for NID simulation, Simulations are performed within NVT ensemble setting without periodic boundary conditions, Nose-Poincare MD algorithm is employed to guarantee preservation of Hamiltonian. Numerical tensile tests are carried out with constant strain rate, Stress-strain curve is constructed from the calculated Cauchy stresses and specified strain values, Non-linear behavior appears around $\varepsilon$=0.064, At this instance, starting of structural reorientations are observed.

  • PDF

Finite Element Study on the Micro-cavity Effect in OLED Devices

  • Lee, Hyeongi;Hwang, Youngwook;Won, Taeyoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • In this paper, we discuss on the optimal design scheme of the bilayer OLED (Organic Light Emitting Diodes) with micro-cavity structure. We carried out the optical simulation on the OLED device and calculated optimal scale of devices with taking the micro-cavity effect into account. Our emission model is based upon an ensemble of radiating dipole antennas. Consequently, we applied Maxwell's equation to this sequence, followed by the analysis on the electrical behaviors of OLED device using Poisson's equation. It contains carrier injection and transportation mechanism. In this process, we found out the thickness of each layer can affect the recombination rate at the emission layer. Therefore, we optimized the thickness of each layer to improve the efficiency of the device.

Design of Symmetrical Slot-Coupled Back-to-Back Microstrip Array Antenna (대칭 슬롯 결합 Back-to-Back 마이크로스트립 배열 안테나의 설계)

  • 김태현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1511-1517
    • /
    • 2000
  • A new slot-coupled back-to-back microstrip array antenna is proposed for using in the IMT-2000 base station or repeater antenna. This antenna is composed of symmetrical SSAIP(Strip Slot, Air Inverted Patch) It has bidirectional radiation pattern in horizontal plane and 22.5$^{\circ}$main beam squint in vertical plane. The analysis is based on the cavity model and the design is achieved using Ensemble. Experimental results for the radiation pattern and the return loss have shown that the direction of the main beam is about 21$^{\circ}$and the impedance bandwidth is approximately 22.9% Thus the proposed antenna is able to operate over both uplink and downlink frequencies in IMT-2000.

  • PDF