• Title/Summary/Keyword: Model Ensemble

Search Result 638, Processing Time 0.023 seconds

Temperature Dependence on Structure and Self-Diffusion of Water: A Molecular Dynamics Simulation Study using SPC/E Model

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3800-3804
    • /
    • 2013
  • In this study, molecular dynamics simulations of SPC/E (extended simple point charge) model have been carried out in the canonical NVT ensemble over the range of temperatures 300 to 550 K with and without Ewald summation. The quaternion method was used for the rotational motion of the rigid water molecule. Radial distribution functions $g_{OO}(r)$, $g_{OH}(r)$, and $g_{HH}(r)$ and self-diffusion coefficients D for SPC/E water were determined at 300-550 K and compared to experimental data. The temperature dependence on the structural and diffusion properties of SPC/E water was discussed.

지진하중에 의한 구조물 파괴형상 변화에 대한 메조스케일 해석

  • Kim, Ju-Whan;Hong, Jung-Wuk;Lim, Yun-Mook
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.413-417
    • /
    • 2005
  • A lattice model of a typical bridge column section is analyzed, and results are presented. The lattice is built as an ensemble of line elements and masses, that can capture strain rate dependency of concrete material. The research mainly breaks up into two parts: First, a micro level analysis of the material is executed, and control parameters of the governing equations are derived by matching the results with the common macroscopic properties of concrete material. Then, the properties exhibited by the micro model, which extends the classical material properties are applied to the mesoscale model. Hence, the analysis of the target structure can be performed. In the mesoscale analysis, ramp-like impulse loads are applied at different velocity, so that the contribution of the material level rate dependency to the global behavior of the structure can be tracked.

  • PDF

Generalized Partially Linear Additive Models for Credit Scoring

  • Shim, Ju-Hyun;Lee, Young-K.
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.587-595
    • /
    • 2011
  • Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset.

Forecasting KOSPI Return Using a Modified Stochastic AdaBoosting

  • Bae, Sangil;Jeong, Minsoo
    • East Asian Economic Review
    • /
    • v.25 no.4
    • /
    • pp.403-424
    • /
    • 2021
  • AdaBoost tweaks the sample weight for each training set used in the iterative process, however, it is demonstrated that it provides more correlated errors as the boosting iteration proceeds if models' accuracy is high enough. Therefore, in this study, we propose a novel way to improve the performance of the existing AdaBoost algorithm by employing heterogeneous models and a stochastic twist. By employing the heterogeneous ensemble, it ensures different models that have a different initial assumption about the data are used to improve on diversity. Also, by using a stochastic algorithm with a decaying convergence rate, the model is designed to balance out the trade-off between model prediction performance and model convergence. The result showed that the stochastic algorithm with decaying convergence rate's did have a improving effect and outperformed other existing boosting techniques.

Mobile health service user characteristics analysis and churn prediction model development (모바일 헬스 서비스 사용자 특성 분석 및 이탈 예측 모델 개발)

  • Han, Jeong Hyeon;Lee, Joo Yeoun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.98-105
    • /
    • 2021
  • As the average life expectancy is rising, the population is aging and the number of chronic diseases is increasing. This has increased the importance of healthy life and health management, and interest in mobile health services is on the rise thanks to the development of ICT(Information and communication technologies) and the smartphone use expansion. In order to meet these interests, many mobile services related to daily health are being launched in the market. Therefore, in this study, the characteristics of users who actually use mobile health services were analyzed and a predictive model applied with machine learning modeling was developed. As a result of the study, we developed a prediction model to which the decision tree and ensemble methods were applied. And it was found that the mobile health service users' continued use can be induced by providing features that require frequent visit, suggesting achievable activity missions, and guiding the sensor connection for user's activity measurement.

A probabilistic micromechanical framework for self-healing polymers containing microcapsules

  • D.W. Jin;Taegeon Kil;H.K. Lee
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.167-177
    • /
    • 2023
  • A probabilistic micromechanical framework is proposed to quantify numerically the self-healing capabilities of polymers containing microcapsules. A two-step self-healing process is designed in this study: A probabilistic micromechanical framework based on the ensemble volume-averaging method is derived for the polymers, and a hitting probability model combined with a crack nucleation model is then utilized for encountering microcapsules and microcracks. Using this framework, a series of parametric investigations are performed to examine the influence of various model parameters (e.g., the volume fraction of microcapsules, microcapsule radius, radius ratio of microcracks to microcapsules, microcrack aspect ratio, and scale parameter) on the self-healing capabilities of the polymers. The proposed framework is also implemented into a finite element code to solve the self-healing behavior of tapered double cantilever beam specimens.

Application of Rainfall Runoff Model with Rainfall Uncertainty (강우자료의 불확실성을 고려한 강우 유출 모형의 적용)

  • Lee, Hyo-Sang;Jeon, Min-Woo;Balin, Daniela;Rode, Michael
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.773-783
    • /
    • 2009
  • The effects of rainfall input uncertainty on predictions of stream flow are studied based extended GLUE (Generalized Likelihood Uncertainty Estimation) approach. The uncertainty in the rainfall data is implemented by systematic/non-systematic rainfall measurement analysis in Weida catchment, Germany. PDM (Probability Distribution Model) rainfall runoff model is selected for hydrological representation of the catchment. Using general correction procedure and DUE(Data Uncertainty Engine), feasible rainfall time series are generated. These series are applied to PDM in MC(Monte Carlo) and GLUE method; Posterior distributions of the model parameters are examined and behavioural model parameters are selected for simplified GLUE prediction of stream flow. All predictions are combined to develop ensemble prediction and 90 percentile of ensemble prediction, which are used to show the effects of uncertainty sources of input data and model parameters. The results show acceptable performances in all flow regime, except underestimation of the peak flows. These results are not definite proof of the effects of rainfall uncertainty on parameter estimation; however, extended GLUE approach in this study is a potential method which can include major uncertainty in the rainfall-runoff modelling.

Climate-related range shifts of Ardisia japonica in the Korean Peninsula: a role of dispersal capacity

  • Park, Seon Uk;Koo, Kyung Ah;Seo, Changwan;Hong, Seungbum
    • Journal of Ecology and Environment
    • /
    • v.41 no.11
    • /
    • pp.310-317
    • /
    • 2017
  • Background: Many studies about climate-related range shift of plants have focused on understanding the relationship between climatic factors and plant distributions. However, consideration of adaptation factors, such as dispersal and plant physiological processes, is necessary for a more accurate prediction. This study predicted the future distribution of marlberry (Ardisia japonica), a warm-adapted evergreen broadleaved shrub, under climate change in relation to the dispersal ability that is determined by elapsed time for the first seed production. Results: We introduced climate change data under four representative concentration pathway (RCP 2.6, 4.5, 6.0, and 8.5) scenarios from five different global circulation models (GCMs) to simulate the future distributions (2041~2060) of marlberry. Using these 20 different climate data, ensemble forecasts were produced by averaging the future distributions of marlberry in order to minimize the model uncertainties. Then, a dispersal-limited function was applied to the ensemble forecast in order to exam the impact of dispersal capacity on future marlberry distributions. In the dispersal-limited function, elapsed time for the first seed production and possible dispersal distances define the dispersal capacity. The results showed that the current suitable habitats of marlberry expanded toward central coast and southern inland area from the current southern and mid-eastern coast area in Korea. However, given the dispersal-limited function, this experiment showed lower expansions to the central coast area and southern inland area. Conclusions: This study well explains the importance of dispersal capacity in the prediction of future marlberry distribution and can be used as basic information in understanding the climate change effects on the future distributions of Ardisia japonica.

Assessment of 6-Month Lead Prediction Skill of the GloSea5 Hindcast Experiment (GloSea5 모형의 6개월 장기 기후 예측성 검증)

  • Jung, Myung-Il;Son, Seok-Woo;Choi, Jung;Kang, Hyun-Suk
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.323-337
    • /
    • 2015
  • This study explores the 6-month lead prediction skill of several climate indices that influence on East Asian climate in the GloSea5 hindcast experiment. Such indices include Nino3.4, Indian Ocean Diploe (IOD), Arctic Oscillation (AO), various summer and winter Asian monsoon indices. The model's prediction skill of these indices is evaluated by computing the anomaly correlation coefficient (ACC) and mean squared skill score (MSSS) for ensemble mean values over the period of 1996~2009. In general, climate indices that have low seasonal variability are predicted well. For example, in terms of ACC, Nino3.4 index is predicted well at least 6 months in advance. The IOD index is also well predicted in late summer and autumn. This contrasts with the prediction skill of AO index which shows essentially no skill beyond a few months except in February and August. Both summer and winter Asian monsoon indices are also poorly predicted. An exception is the Western North Pacific Monsoon (WNPM) index that exhibits a prediction skill up to 4- to 6-month lead time. However, when MSSS is considered, most climate indices, except Nino3.4 index, show a negligible prediction skill, indicating that conditional bias is significant in the model. These results are only weakly sensitive to the number of ensemble members.

Inter-comparison of Prediction Skills of Multiple Linear Regression Methods Using Monthly Temperature Simulated by Multi-Regional Climate Models (다중 지역기후모델로부터 모의된 월 기온자료를 이용한 다중선형회귀모형들의 예측성능 비교)

  • Seong, Min-Gyu;Kim, Chansoo;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.669-683
    • /
    • 2015
  • In this study, we investigated the prediction skills of four multiple linear regression methods for monthly air temperature over South Korea. We used simulation results from four regional climate models (RegCM4, SNURCM, WRF, and YSURSM) driven by two boundary conditions (NCEP/DOE Reanalysis 2 and ERA-Interim). We selected 15 years (1989~2003) as the training period and the last 5 years (2004~2008) as validation period. The four regression methods used in this study are as follows: 1) Homogeneous Multiple linear Regression (HMR), 2) Homogeneous Multiple linear Regression constraining the regression coefficients to be nonnegative (HMR+), 3) non-homogeneous multiple linear regression (EMOS; Ensemble Model Output Statistics), 4) EMOS with positive coefficients (EMOS+). It is same method as the third method except for constraining the coefficients to be nonnegative. The four regression methods showed similar prediction skills for the monthly air temperature over South Korea. However, the prediction skills of regression methods which don't constrain regression coefficients to be nonnegative are clearly impacted by the existence of outliers. Among the four multiple linear regression methods, HMR+ and EMOS+ methods showed the best skill during the validation period. HMR+ and EMOS+ methods showed a very similar performance in terms of the MAE and RMSE. Therefore, we recommend the HMR+ as the best method because of ease of development and applications.