• Title/Summary/Keyword: Model Characteristic Parameters

Search Result 564, Processing Time 0.026 seconds

The Impact of Characteristic Velocities Considering Geomorphological Dispersion on Shape of Instantaneous Unit Hydrograph (지형학적 분산을 고려한 특성유속이 순간단위도 형상에 미치는 영향)

  • Choi, Yong-Joon;Kim, Joo-Cheol;Hwang, Man-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.399-408
    • /
    • 2010
  • The sensitivity of Nash model parameters is analyzed about characteristic velocities considering geomorphological dispersion in the present study. And changing shape of IUH compared and analyzed as variation of characteristic velocities through numerical experiment. Application watersheds are selected 4 subwatersheds which are located at main stream of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. And Nash model parameters are estimated with moments of path lengths and characteristic velocities. The changing trend about IUH which is derived Nash model parameters are compared as variation of characteristic velocities. The Major results of this study are summarized as follows. The Nash model parameters sensitively present changes about hillslope characteristic velocity. And the effect of the peak discharge and shape of recession in IUH dominate with hillslope's characteristic velocity, the effect of the peak time and shape of ascension in IUH dominate with channel's characteristic velocity.

Model Parameter Determination of Industrial Co-generator Model Parameters through Filed Measurement (현장 계측을 통한 산업용 열병합 발전설비 모델 파라미터 결정)

  • Kim, Hak-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.159-165
    • /
    • 2007
  • This paper presents a method for the derivation of model parameters of a co-generation system using data measured through on-site generator characteristic testing and validates its model parameters. Dynamic models such as generator, excitation system, and turbine/governor are mainly dealt in this paper. For the purpose of validation of derived model parameters, the measured results are compared with simulation results. The comparisons between measured results and simulation results show good match.

Efficient Method for Recovering Spectral Reflectance Using Spectrum Characteristic Matrix (스펙트럼 특성행렬을 이용한 효율적인 반사 스펙트럼 복원 방법)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1439-1444
    • /
    • 2015
  • Measuring spectral reflectance can be regarded as obtaining inherent color parameters, and spectral reflectance has been used in image processing. Model-based spectrum recovering, one of the method for obtaining spectral reflectance, uses ordinary camera with multiple illuminations. Conventional model-based methods allow to recover spectral reflectance efficiently by using only a few parameters, however it requires some parameters such as power spectrum of illuminations and spectrum sensitivity of camera. In this paper, we propose an enhanced model-based spectrum recovering method without pre-measured parameters: power spectrum of illuminations and spectrum sensitivity of camera. Instead of measuring each parameters, spectral reflectance can be efficiently recovered by estimating and using the spectrum characteristic matrix which contains spectrum parameters: basis function, power spectrum of illumination, and spectrum sensitivity of camera. The spectrum characteristic matrix can be easily estimated using captured images from scenes with color checker under multiple illuminations. Additionally, we suggest fast recovering method preserving positive constraint of spectrum by nonnegative basis function of spectral reflectance. Results of our method showed accurately reconstructed spectral reflectance and fast constrained estimation with unmeasured camera and illumination. As our method could be conducted conveniently, measuring spectral reflectance is expected to be widely used.

Characteristic Variation of 3-D Solenoid Embedded Inductors for Wireless Communication Systems

  • Shin, Dong-Wook;Oh, Chang-Hoon;Kim, Kil-Han;Yun, Il-Gu
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.347-354
    • /
    • 2006
  • The characteristic variation of 3-dimensional (3-D) solenoid-type embedded inductors is investigated. Four different structures of a 3-D inductor are fabricated by using a low-temperature co-fired ceramic (LTCC) process, and their s-parameters are measured between 50 MHz and 5 GHz. The circuit model parameters of each building block are optimized and extracted using the partial element equivalent circuit method and an HSPICE circuit simulator. Based on the model parameters, the characteristics of the test structures such as self-resonant frequency, inductance, and quality (Q) factor are analyzed, and predictive modeling is applied to the structures composed of a combination of the modeled building blocks. In addition, characteristic variations of the 3-D inductors with different structures using extracted building blocks are also investigated. This approach can provide a characteristic estimation of 3-D solenoid embedded inductors for structural variations.

  • PDF

The Robust Parameter Design of Multiple Characteristics with Multiple Objective and Subjective Attributes (다수의 주관적 요소와 객관적 요소를 고려한 다특성치 강건설계)

  • 조용욱;박명규
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.11a
    • /
    • pp.251-254
    • /
    • 2000
  • The critical problem in dealing with multiple characteristics is how to compromise the conflict among the selected levels of the design parameters for each individual characteristic. In this study, First, Methodology using SN ratio optimized by univariate technique is proposed and a parameter design procedure to achieve the optimal compromise among several different response variables is developed. Second, to solve the issue on the optimal design for multiple quality characteristics, this study modelled the expected loss function with cross-product terms among the characteristics and derived range of the coefficients of the terms. The model will be used to determine the global optimal design parameters where there exists the conflict among the characteristics, which shows difference in optimal design parameters for the individual characteristics. Third, this paper propose a decision model to incorporates the values assigned by a group of experts on different factors in weighting decision of characteristic. Using this model, SN ratio of taguchi method for each of subjective factors as well as values of weights are used in this comprehensive method for weighting decision of characteristic.

  • PDF

A Study on the Output Characteristic of Vacuum Booster (진공배력장치 출력특성에 대한 연구)

  • Lee, C.T.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.110-116
    • /
    • 2009
  • In the present study, we proposed a simulation model of vacuum booster with AMESIM software to predict the output characteristic. And we performed the sensitivity analysis of output characteristic with main design parameters, such as diaphragm diameter. All of these parameters are main design parameters in the procedure of vacuum booster design. The simulation results of this paper offer qualitative information of vacuum booster output. Therefore, the simulation results of this paper will be used effectively for the design procedure of vacuum booster in the industrial field.

  • PDF

Soil Stress Analysis Using Discrete Element Method for Plate-Sinkage Tests (DEM 모델을 이용한 평판재하시험의 토양 수직응력 해석)

  • Jang, Gichan;Lee, Soojin;Lee, Kyu-Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.230-237
    • /
    • 2015
  • Soil deformation on the off-load ground is significantly affected by soil conditions, such as soil type, water content, and etc. Thus, the soil characteristics should be estimated for predicting vehicle movements on the off-load conditions. The plate-sinkage test, a widely-used experimental test for predicting the wheel-soil interaction, provides the soil characteristic parameters from the relationship between soil stress and plate sinkage. In this study, soil stress under the plate-sinkage situation is calculated by the DEM (Discrete Element Method) model. We developed a virtual soil bin with DEM to obtain the vertical reaction forces under the plate pressing the soil surface. Also parametric studies to investigate effects of DEM model parameters, such as, particle density, Young's modulus, dynamic friction, rolling friction, and adhesion, on the characteristic soil parameters were performed.

A hybrid model of regional path loss of wireless signals through the wall

  • Xi, Guangyong;Lin, Shizhen;Zou, Dongyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3194-3210
    • /
    • 2022
  • Wall obstruction is the main factor leading to the non-line of sight (NLoS) error of indoor localization based on received signal strength indicator (RSSI). Modeling and correcting the path loss of the signals through the wall will improve the accuracy of RSSI localization. Based on electromagnetic wave propagation theory, the reflection and transmission process of wireless signals propagation through the wall is analyzed. The path loss of signals through wall is deduced based on power loss and RSSI definition, and the theoretical model of path loss of signals through wall is proposed. In view of electromagnetic characteristic parameters of the theoretical model usually cannot be accurately obtained, the statistical model of NLoS error caused by the signals through the wall is presented based on the log-distance path loss model to solve the parameters. Combining the statistical model and theoretical model, a hybrid model of path loss of signals through wall is proposed. Based on the empirical values of electromagnetic characteristic parameters of the concrete wall, the effect of each electromagnetic characteristic parameters on path loss is analyzed, and the theoretical model of regional path loss of signals through the wall is established. The statistical model and hybrid model of regional path loss of signals through wall are established by RSSI observation experiments, respectively. The hybrid model can solve the problem of path loss when the material of wall is unknown. The results show that the hybrid model can better express the actual trend of the regional path loss and maintain the pass loss continuity of adjacent areas. The validity of the hybrid model is verified by inverse computation of the RSSI of the extended region, and the calculated RSSI is basically consistent with the measured RSSI. The hybrid model can be used to forecast regional path loss of signals through the wall.

Identification of Nash Model Parameters Based on Heterogeneity of Drainage Paths (배수경로의 이질성을 기반으로 한 Nash 모형의 매개변수 동정)

  • Choi, Yong-Joon;Kim, Joo-Cheol;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • For the first time, this study identifies Nash model parameters by GIUH theory based on grid of GIS with heterogeneity of drainage path. Identified parameters have advantages to improve accuracy and usefulness with considering hillslpoe-flow, geomorphological dispersion and easily extracting geomorphological factors by GIS in the watershed. Calculated results by identified parameters compare with observation data for verification of this model. The comparison is well correspondence between observed data and calculated results. And the comparison results of changing trends about lag time and the variance as hillslope and channel characteristic velocities sensitively present changes about hillslope characteristic velocity. Thus this model justifies that estimation of hillslope characteristic velocity demands with the great caution.

Simulation of Groundwater Flow in Fractured Porous Media using a Discrete Fracture Model (불연속 파쇄모델을 이용한 파쇄 매질에서의 지하수 유동 시뮬레이션)

  • Park, Yu-Chul;Lee, Kang-Kun
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.503-512
    • /
    • 1995
  • Groundwater flow in fracture networks is simulated using a discrete fracture (DF) model which assume that groundwater flows only through the fracture network. This assumption is available if the permeability of rock matrix is very low. It is almost impossible to describe fracture networks perfectly, so a stochastic approach is used. The stochastic approach assumes that the characteristic parameters in fracture network have special distribution patterns. The stochastic model generates fracture networks with some characteristic parameters. The finite element method is used to compute fracture flows. One-dimensional line element is the element type of the finite elements. The simulation results are shown by dominant flow paths in the fracture network. The dominant flow path can be found from the simulated groundwater flow field. The model developed in this study provides the tool to estimate the influences of characteristic parameters on groundwater flow in fracture networks. The influences of some characteristic parameters on the frcture flow are estimated by the Monte Carlo simulation based on 30 realizations.

  • PDF