• 제목/요약/키워드: Model Based Adaptive Control

검색결과 668건 처리시간 0.027초

On-line Parameter Estimator Based on Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Hyun, Chang-Ho;Park, Mignon
    • 한국지능시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.481-486
    • /
    • 2002
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-5) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control. Based on the derived design method, the parameter estimation for controllable canonical T-S fuzzy model is also Presented.

조립용 로봇의 가변구조 적응제어 (Variable Structure Adaptive Control of Assembling Robot)

  • 한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.131-136
    • /
    • 1997
  • This paper represent the variable structure adaptive mode control technique which is new approach to implement the robust control of industrial robot manipulator with external disturbances and parameter uncertainties. Sliding mode control is a well-known technique for robust control of uncertain nonlinear systems. The robustness of sliding model controllers can be shown in contiuous time, but digital implementation may not preserve robustness properties because the sampling process limits the existence of a true sliding mode. the sampling process often forces the trajectory to oscillate in the neighborhood of the sliding surface. Adaptive control technique is particularly well-suited to robot manipulators where dynamic model is highly complex and may contain unknown parameters. Adaptive control algorithm is designed by using the principle of the model reference adaptive control method based upon the hyperstability theory. The proposed control scheme has a simple sturcture is computationally fast and does not require knowledge of the complex dynamic model or the parameter values of the manipulator or the payload. Simulation results show that the proposed method not only improves the performance of the system but also reduces the chattering problem of sliding mode control, Consequently, it is expected that the new adaptive sliding mode control algorithm will be suited for various practical applications of industrial robot control system.

  • PDF

Output feedback-based model reference adaptive control for MIMO plants

  • Takahashi, Masanori;Mizumoto, Ikuro;Iwai, Zenta
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.181-184
    • /
    • 1996
  • This paper deals with the design problem of model reference adaptive controllers for MIMO plants with unknown orders. A design scheme for an adaptive control system based on CGT theorem, which has hierarchical structures derived from backstepping strategies, is proposed for MIMO plants with unknown orders but with known relative MacMillan degrees(relative degrees for SISO plants). It is also shown that all the signals in the resulting control system are bounded, and that the asymptotic tracking is achieved in the case where reference inputs are step.

  • PDF

A Multi-target Tracking Algorithm for Application to Adaptive Cruise Control

  • Moon Il-ki;Yi Kyongsu;Cavency Derek;Hedrick J. Karl
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1742-1752
    • /
    • 2005
  • This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC) system which consists of three parts; a multi-model-based multi-target state estimator, a primary vehicular target determination algorithm, and a single-target adaptive cruise control algorithm. Three motion models, which are validated using simulated and experimental data, are adopted to distinguish large lateral motions from longitudinally excited motions. The improvement in the state estimation performance when using three models is verified in target tracking simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. The MTT-ACC system is tested under lane changing situations to examine how much the system performance is improved when multiple models are incorporated. Simulation results show system response that is more realistic and reflective of actual human driving behavior.

유도전동기의 고성능 속도제어를 위한 적응퍼지제어 (Adaptive Fuzzy Control for High Performance Speed Control of Induction Motor Drive)

  • 이홍균;이정철;정택기;정동화
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.222-224
    • /
    • 2002
  • This paper investigates the adaptive control of a fuzzy logic based speed and flux controller for a vector controlled induction motor drive. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the model reference adaptive control(mAC) fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed MRAC fuzzy controller is confirmed by performance results for induction motor drive system.

  • PDF

동적 핸드오프와 전력제어를 고려한 적응배열 시스템의 네트워크 시뮬레이션 (System Level Network Simulation of Adaptive Array with Dynamic Handoff and Power Control)

  • Yeong-Jee Chung;Jeffrey H. Reed
    • 한국시뮬레이션학회논문지
    • /
    • 제8권4호
    • /
    • pp.33-51
    • /
    • 1999
  • In this study, the system level network simulation is considered with adaptive array antenna in CDMA mobile communication system. A network simulation framework is implemented based on IS-95A/B system to consider dynamic handoff, system level network behavior, and deploying strategy into the overall CDMA mobile communication network under adaptive array algorithm. Its simulation model, such as vector channel model, adaptive beam forming antenna model, handoff model, and power control model, are described in detail with simulation block. In order to maximize SINR of received signal at antenna, Maximin algorithm is particularly considered, and it is computed at each simulation snap shot with SINR based power control and handoff algorithm. Graphic user interface in this system level network simulator is also implemented to define the simulation environments and to represent simulation results on real mapping system. This paper also shows some features of simulation framework and simulation results.

  • PDF

TMS320C50칩을 이용한 로봇 매니퓰레이터의 적응-신경제어 (The Adaptive-Neuro Control of Robot Manipulator Based-on TMS320C50 Chip)

  • 이우송;김용태;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.305-311
    • /
    • 2003
  • We propose a new technique of adaptive-neuro controller design to implement real-time control of robot manipulator, Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of loaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real time control of robot system using DSPs(TMS320C50)

  • PDF

Wavelet Neural Network Based Indirect Adaptive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Choi, Jong-Tae;Park, Jin-Bae
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.118-124
    • /
    • 2004
  • In this paper, we present a indirect adaptive control method using a wavelet neural network (WNN) for the control of chaotic nonlinear systems without precise mathematical models. The proposed indirect adaptive control method includes the off-line identification and on-line control procedure for chaotic nonlinear systems. In the off-line identification procedure, the WNN based identification model identifies the chaotic nonlinear system by using the serial-parallel identification structure and is trained by the gradient-descent method. And, in the on-line control procedure, a WNN controller is designed by using the off-line identification model and is trained by the error back-propagation algorithm. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic nonlinear systems.

유도전동기 드라이브의 고성능 제어를 위한 적응 FNN 제어기 (Adaptive FNN Controller for High Performance Control of Induction Motor Drive)

  • 이정철;이홍균;정동화
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권9호
    • /
    • pp.569-575
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control Performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation. and steady- state accuracy and transient response.

수중 선체에 장착된 로봇팔 궤적의 비귀환형 적응제어 (Non-regressor Based Adaptive Tracking Control of an Underwater Vehicle-mounted Manipulator)

  • 여준구
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.7-12
    • /
    • 2000
  • This paper presents a non-regressor based adaptive control scheme for the trajectory tracking of underwater vehicle-mounted manipulator systems(UVMS). The adaptive control system includes a class of unmodeled effects is applied to the trajectory control of an UVMS. The only information required to implement this scheme ios the upper bound and lowe bound of the system parameter matrices the upper bound of unmodeled effects the number of joints the position and attitude of the vehicle and trajectory commands. The adaptive control law estimates control gains defined by the combinations of the bounded constants of system parameter matrices and of a filtered error equation. To evaluate the performance of the non-regressor based adaptive controller computer simulation was performed with a two-link planar robot model mounted on an underwater vehicle. The hydrodynamic effects acting on the manipulator are included. It is assumed that the vehicle's motion is slow and can be predicted with a proper compensator.

  • PDF