• Title/Summary/Keyword: Mode of failure

Search Result 2,224, Processing Time 0.028 seconds

Evaluation of static fracture resistances and patterns of pulpless tooth restored with poly-ether-ketone-ketone (PEKK) post (Poly-ether-ketone-ketone (PEKK) 포스트로 수복한 근관 치료 치아의 정적 파절 저항성 및 파절 형태에 관한 평가)

  • Park, Ha Eun;Lee, Cheol Won;Lee, Won Sup;Yang, Sung Eun;Lee, Su Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • Purpose: The purpose of present study was to investigate fracture strength and mode of failure of endodontically treated teeth restored with metal cast post-core system, prefabricated fiber post system, and newly introduced polyetherketoneketone (PEKK) post-core system. Materials and methods: A total of 21 mandibular premolar were randomly grouped into 3 groups of 7 each according to the post material. Group A was for metal cast post core; Group B for prefabricated glass fiber post and resin core; and Group C for milled PEKK post cores. All specimens were restored with metal crown. The fracture strength of each specimen was measured by applying a static load of 135-degree to the tooth at 2 mm/min crosshead speed using a universal testing machine. After the fracture strength measurement, the mode of failure was observed. The results were analyzed using Kruscal-Wallis test and post hoc Mann-Whitney U test at confidence interval ${\alpha}=.05$. Results: Fracture resistance of PEKK post core was lower than those of cast metal post and fiber reinforced post with composite resin core. In the aspect of fracture mode most of the root fracture occurred in the metal post core, whereas the post detachment occurred mainly in the fiber reinforced post. In the case of PEKK post core, teeth and post were fractured together. Conclusion: It is necessary to select appropriate materials of post for extensively damaged teeth restoration and clinical application of the PEKK post seems to require more research on improvement of strength.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

Physical Properties and Detachment Characteristics of Persimmon Fruit (감 과실(果實)의 물리성(物理性)및 이탈특성(離脫特性))

  • Kim, Tae Han
    • Current Research on Agriculture and Life Sciences
    • /
    • v.3
    • /
    • pp.62-69
    • /
    • 1985
  • In order to develop the mechanical fruit harvest system the detachment force, type and torque investigated and analyse as several loading modes were applied on the fruit-stem of the persimmon fruit. A proving ring with strain gauges was used for the experiment. The following conclusions were drawn from the results : The mode of withdrawl of the stem from the calyx appeared highly as the persimmon fruit matured. The mode of failure at the junction of the stem and calyx which was desirable mode for mechanical fruit harvest increased as the angular displacement of the fruit with respect to the stem axis increased from zero to ninety degrees. However the mode of failure of the fruiting branch decreased for the same degree of angle pull as above. The range of detachment force of the persimmon fruit was from 13 to 5 kg. The detachment force decreased from 47 to 8 % as the fruit matured. Also, the force decreased from 31 to 24 % for the same maturity levels as the angular displacement of the fruit with respect to the stem axis increased from zero to ninety degrees. The range of detachment force to weight ratio(F/W) of the fruit was from 130 to 54 approximately. The detachment force to weight ratio (F/W) decreased from 36 to 8 % as the fruit matured. Also, the ratio (F/W) decreased from 49 to 33 % for the same maturity levels as the same degree of angle pull as above. In order to remove fruit from tree the desirable force applied to the stem is approximately from 1,280 to 530 kg. Also, the desirable torque to remove the fruits was approximately from 1.1 to $0.5kg{\cdot}cm$.

  • PDF

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

The Effect of Nasal BiPAP Ventilation in Acute Exacerbation of Chronic Obstructive Airway Disease (만성 기도폐쇄환자에서 급성 호흡 부전시 BiPAP 환기법의 치료 효과)

  • Cho, Young-Bok;Kim, Ki-Beom;Lee, Hak-Jun;Chung, Jin-Hong;Lee, Kwan-Ho;Lee, Hyun-Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.190-200
    • /
    • 1996
  • Background : Mechanical ventilation constitutes the last therapeutic method for acute respiratory failure when oxygen therapy and medical treatment fail to improve the respiratory status of the patient. This invasive ventilation, classically administered by endotracheal intubation or by tracheostomy, is associated with significant mortality and morbidity. Consequently, any less invasive method able to avoid the use of endotracheal ventilation would appear to be useful in high risk patient. Over recent years, the efficacy of nasal mask ventilation has been demonstrated in the treatment of chronic restrictive respiratory failure, particularly in patients with neuromuscular diseases. More recently, this method has been successfully used in the treatment of acute respiratory failure due to parenchymal disease. Method : We assessed the efficacy of Bilevel positive airway pressure(BiPAP) in the treatment of acute exacerbation of chronic obstructive pulmonary disease(COPD). This study prospectively evaluated the clinical effectiveness of a treatment schedule with positive pressure ventilation via nasal mask(Respironics BiPAP device) in 22 patients with acute exacerbations of COPD. Eleven patients with acute exacerbations of COPD were treated with nasal pressure support ventilation delivered via a nasal ventilatory support system plus standard treatment for 3 consecutive days. An additional 11 control patients were treated only with standard treatment. The standard treatment consisted of medical and oxygen therapy. The nasal BiPAP was delivered by a pressure support ventilator in spontaneous timed mode and at an inspiratory positive airway pressure $6-8cmH_2O$ and an expiratory positive airway pressure $3-4cmH_2O$. Patients were evaluated with physical examination(respiratory rate), modified Borg scale and arterial blood gas before and after the acute therapeutic intervention. Results : Pretreatment and after 3 days of treatment, mean $PaO_2$ was 56.3mmHg and 79.1mmHg (p<0.05) in BiPAP group and 56.9mmHg and 70.2mmHg (p<0.05) in conventional treatment (CT) group and $PaCO_2$ was 63.9mmHg and 56.9mmHg (p<0.05) in BiPAP group and 53mmHg and 52.8mmHg in CT group respectively. pH was 7.36 and 7.41 (p<0.05) in BiPAP group and 7.37 and 7.38 in cr group respectively. Pretreatment and after treatment, mean respiratory rate was 28 and 23 beats/min in BiPAP group and 25 and 20 beats/min in CT group respectively. Borg scale was 7.6 and 4.7 in BiPAP group and 6.4 and 3.8 in CT group respectively. There were significant differences between the two groups in changes of mean $PaO_2$, $PaCO_2$ and pH respectively. Conclusion: We conclude that short-term nasal pressure-support ventilation delivered via nasal BiPAP in the treatment of acute exacerbation of COPD, is an efficient mode of assisted ventilation for improving blood gas values and dyspnea sensation and may reduce the need for endotracheal intubation with mechanical ventilation.

  • PDF

EFFECTS OF ACID TREATMENT OF FLUORIDE APPLIED DENTIN SURFACE ON DENTIN BONDING (불소도포한 상아질면의 산처리가 상아질접착에 미치는 영향)

  • Hwang, Hea-Kyung;Ahn, Sik-Hwan;Kim, Sung-Kyo;Jo, Kwang-Hun;Park, Jin-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.602-618
    • /
    • 1996
  • The purpose of this study was to investigate the effect of acid treatment of fluoride applied dentin surface with various concentrations of phosphoric acid for various periods of time on dentin bonding. Dentin specimens prepared from freshly extracted bovine mandibular anterior teeth were divided into fluoridated and nonfluoridated groups. Specimens of nonfluoridated group were pretreated with 10% phosphoric acid for 15 seconds. Those of fluoridated groups were treated with 2% sodium fluoride or 2% stannous fluoride solution for 5 minutes and stored in $37^{\circ}C$ distilled water for 3 days, followed by phosphoric acid treatment. The concentrations of phosphoric acid were 10%, 32% or 50% and the treatment periods of time were 15, 30 or 60 seconds. All the specimens were bonded with All Bond$^{(R)}$ 2 and Bisfil$^{TM}$ composite resin. After bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, tensile bond strengths of each specimens were measured and the pretreated dentin and the fractured dentin surfaces were examined under the scanning electron microscope. The results were as follows : The tensile bond strengths from the fluoridated groups were significantly lower than those from the nonfluoridated group when the concentrations of phosphoric acid and the treatment periods of time were equal in all the groups (p<0.05). In general, the higher the concentration of phosphoric acid and the longer the treatment period of time for acid etching on the fluoride applied dentin surface, the higher were the bond strength values. Recovery of bond strength of the dentin bonding agent was better in the NaF applied group than in the $SnF_2$ applied one. SEM findings of NaF applied and $SnF_2$ applied dentin surfaces demonstrated reaction product-covered and partially or completely obstructed dentinal tubules. SEM findings of dentin surfaces fluoridated for 5 minutes followed by etching showed wider tubular openings and more clean dentin surfaces when dentin was etched with higher concentration of phosphoric acid for longer period of time. On the SEM observations of the fractured dentin-resin interface, the etched specimens of fluoridated group showed an adhesive failure mode when the concentration of phosphoric acid and the treatment period of time were same as in the nonfluoridated group. As the concentration of phosphoric acid and the treatment period of time increase during acid etching, the cohesive failure area increased. However, excessive acid etching caused adhesive failure.

  • PDF

An Experimental Study on the Period of Cold Joint Occurrence Effecting Shear Bond Performances of UHSCC (콜드조인트 발생시간이 초고강도 섬유보강 시멘트 복합체의 전단 접착 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Min-Seong;Yang, Hyun-Min;Lee, Han-Seung;Cho, Keun-hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • The purpose of this study is to evaluate the performance on the compressive bonding shear strength of ultra-high strength steel fiber reinforced cementitous composites(UHSCC). As a result of compressive bonding shear strength through Direct shear test, It was found that the specimen($150{\times}150{\times}150mm$) of NC(Normal concrete) + NC showed similar compressive bonding shear strength at whole experimental level. On the other hand, the specimen of UHSCC + UHSCC showed decrease of compressive bonding shear strength from after 30 minutes of the retarded placement than 0 minute. As a result of analyzing failure mode of bonding interface, It was found that the specimen of NC + NC showed mixed failure at whole experimental level. In case of the specimen of UHSCC + UHSCC, it showed interface failure from the specimen that are 30 minutes, 60 minutes and 90 minutes of delay of concrete placing. As a result of analyzing XRD test in terms of the placement interface on the specimen of NC and UHSCC, relatively much amount of $SiO_2$ was detected from the specimen of UHSCC than that of NC. It is judged that the most of main components of coating film shown in the specimen of UHSCC is $SiO_2$. In conclusion, it is judged that UHSCC which is made from after 30 minutes of delay of concrete placing is unable to be used as structural member because of deterioration of bonding performance. From later study, it is judged that the improvement of bonding performance from the part of cold joint occurrence is necessary through the interface preparation method.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

Mechanical Properties of Precious Metal-Ceramic Alloy Joined by the Laser-Welding and the Soldering Method (레이저 용접과 납착법으로 연결된 귀금속성 금속-도재 합금의 물리적 성질)

  • Oh, Jung-Ran;Lee, Seok-Hyung;Woo, Yi-Hyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.269-279
    • /
    • 2003
  • This study investigated the mechanical properties of precious metal-ceramic alloy joined by the laser-welding and the soldering compared with the parent metal. Twenty-four tensile specimens were cast in precious metal-ceramic alloy and divided into three groups of eight. All specimens in the control group(group 1) were left in the as-cast condition. Group 2 and 3 were the test specimens, which were sectioned at the center. Eight of sectioned specimens were joined by soldering with a propane-oxygen torch, and the remaining specimens were joined by laser-welding. After joining, each joint diameter was measured, and then tested to tensile failure on an Instron machine. Failure loads were recorded, and then fracture stress(ultimate tensile strength), 0.2% yield strength and % elongation calculated. These data for three groups were subjected to a one-way analysis of variance(ANOVA). Neuman-Keuls post hoc test was then used to determine any significant differences between groups. The fracture locations, fracture surfaces were examined by SEM(scanning electron microscope). The results were as follows: 1) The tensile strength and 0.2% yield strength of the soldered group($280.28{\pm}49.35MPa$, $160.24{\pm}26.67MPa$) were significantly less than both the as-cast group($410.99{\pm}13.07MPa$, $217.82{\pm}17.99MPa$) and the laser-welded group($383.56{\pm}59.08MPa$, $217.18{\pm}12.96MPa$). 2) The tensile strength and 0.2% yield strength of the laser-welded group were about each 98%, 99.7% of the as-cast group. There were no statistically significant differences in these two groups(p<0.05). 3) The percentage elongations of the soldered group($3.94{\pm}2.32%$) and the laser-welded group($5.06{\pm}1.08%$) were significantly less than the as-cast group($14.25{\pm}4.05%$) (p<0.05). 4) The fracture of the soldered specimens occurred in the solder material and many porosities were showed at the fracture site. 5) The fracture of the laser-welded specimens occurred also in the welding area, and lack of fusion and a large void was observed at the center of the fracture surface. However, the laser-welded specimens showed a ductile failure mode like the as- cast specimens. The results of this study indicated that the tensile strengths of the laser-welded joints were comparable to those of the as-cast joints and superior to those of the soldered joints.

Effect of liners and primers on tensile bond strength between zirconia and resin-based luting agent

  • Jo, Eun-Hye;Huh, Yoon-Hyuk;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.374-380
    • /
    • 2018
  • PURPOSE. The effect of silica-based glass-ceramic liners on the tensile bond strength between zirconia and resin-based luting agent was evaluated and compared with the effect of 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing primers. MATERIALS AND METHODS. Titanium abutments and zirconia crowns (n = 60) were fabricated, and the adhesive surfaces of the specimens were treated by airborne-particle abrasion. The specimens were divided into 5 groups based on surface treatment: a control group, 2 primer groups (MP: Monobond Plus; ZP: Z Prime Plus), and 2 liner groups (PL: P-containing Liner; PFL: P-free Liner). All specimens were cemented with self-adhesive resin-based luting agent. After 24-hour water storage and thermocycling (5,000 cycles, $5^{\circ}C/55^{\circ}C$), the tensile bond strength was measured using a universal testing machine. Failure mode analysis and elemental analysis on the bonding interface were performed. The data were analyzed using Kruskal-Wallis test, Dunn's post hoc test, and Fisher's exact test. RESULTS. The liner groups and primer groups showed significantly higher tensile bond strengths than that of the control group (P<.05). PFL showed a significantly higher tensile bond strength than the primer groups (P<.05). The percentage of mixed failure was higher in the primer groups than in the control group (P<.001), and all the specimens showed mixed failure in the liner groups (P<.001). A chemical reaction area was observed at the bonding interface between zirconia and liner. CONCLUSION. The application of liner significantly increased the tensile bond strength between zirconia and resin-based luting agent. PFL was more effective than MDP-containing primers in improving the tensile bond strength with the resin-based luting agent.