• Title/Summary/Keyword: Mode number

Search Result 1,936, Processing Time 0.024 seconds

Modal Analysis of Steel Box Bridge by Using the Component Mode Synthesis (CMS 방법에 의한 강교량의 동적모드해석)

  • 조병완;박종칠;김영진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.177-184
    • /
    • 1997
  • The Component Mode Synthesis Method for the -vibration analysis can be applied to the large-scaled structures, which have difficulty in modeling because of their intricate shapes and boundary conditions and need much time in computational calculations. This paper uses the Component Mode Synthesis Method to analyze the free vibration for the steel box bridge having the large number of D.O.F as an example of the large structural system. By comparing the CMS method to the other method (FEM), this paper proves the accuracy of the solution in techniques and the efficiency in time.

  • PDF

Fast Coding Mode Decision for H.264 Video Coding (H.264 동영상 압축을 위한 고속 부호화 모드 결정 방법)

  • 이제윤;전병우
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.165-173
    • /
    • 2004
  • H.264 is the newest international video coding standard that provides high coding efficiency. A macroblock in H.264 has 7 different motion-compensation block sizes in the Inter mode, and several different prediction directions in the Intra mode. In order to achieve as highest coding efficiency as possible, H.264 reference model employs complex mode decision technique based on rate-distortion (RD) optimization which requires high computational complexity. In this paper, we propose two techniques -'early SKIP mode decision' and 'selective intra mode decision' - which can further reduce the computational complexity. Simulation results show that without considerable performance degradation, the proposed methods reduce encoding time by 30% on average and save the number of computing rate-distortion cost by 72%.

Estimation of bridge displacement responses using FBG sensors and theoretical mode shapes

  • Shin, Soobong;Lee, Sun-Ung;Kim, Yuhee;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.229-245
    • /
    • 2012
  • Bridge vibration displacements have been directly measured by LVDTs (Linear Variable Differential Transformers) or laser equipment and have also been indirectly estimated by an algorithm of integrating measured acceleration. However, LVDT measurement cannot be applied for a bridge crossing over a river or channel and the laser technique cannot be applied when the weather condition is poor. Also, double integration of accelerations may cause serious numerical deviation if the initial condition or a regression process is not carefully controlled. This paper presents an algorithm of estimating bridge vibration displacements using vibration strains measured by FBG (Fiber Bragg Grating) sensors and theoretical mode shapes of a simply supported beam. Since theoretically defined mode shapes are applied, even high modes can be used regardless of the quality of the measured data. In the proposed algorithm, the number of theoretical modes is limited by the number of sensors used for a field test to prevent a mathematical rank deficiency from occurring in computing vibration displacements.89The proposed algorithm has been applied to various types of bridges and its efficacy has been verified. The closeness of the estimated vibration displacements to measured ones has been evaluated by computing the correlation coefficient and by comparing FRFs (Frequency Response Functions) and the maximum displacements.

Reading Speed Comparison between Operating Modes of a 13.56 MHz RFID System (13.56MHz RFID 시스템의 모드별 인식속도 비교)

  • Je, Young-Dai;Yang, Hoon-Gee;Yang, Sung-Hyun;Quan, Cheng-Hao;Choi, Gil-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7C
    • /
    • pp.697-705
    • /
    • 2009
  • This paper presents the theoretical tag-reading speed in the ASK and the PJM mode of a 13.56MHz RFID system which have been adopted in the international standard ISO 18000-3, along with simulation results to support the mathematical analysis. Through the analysis using the number of tag-dependent Q-algorithm, which was known to give relatively fast reading speed, we not only derive the number of slots to read out given tags, but compare the reading speeds of the ASK with that of the PJM mode. Moreover, we present the numerical comparison of two modes which bring the equivalent results as in the theoretical one.

Effect of Injection Timing and Injector Hole Number on Emission Characteristics for Off-road Diesel Engine (비도로용 디젤엔진의 분사시기 및 인젝터 변경에 따른 배출가스 특성 연구)

  • Kim, Hoon Myung;Kang, Jeong Ho;Han, Da Hye;Jung, Hak Sup;Pyo, Su Kang;Ahn, Jueng Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.2
    • /
    • pp.15-20
    • /
    • 2014
  • Environmental regulations are being reinforced for the solution of environmental pollution, that are global issues. Exhaust gas regulations of off-road engines also demand stepwise reduction emission from beginning of Tier 4 interim(2013). Characteristically, Tier 4 regulation apply the NRTC mode which is a transient cycle. And technical studies using NRTC mode are uncommon. In this study, for satisfy the Tier 4 final regulation on the NRTC mode, experimental study was conducted using a 3.4 L off-road engine. Fuel injection timing and injector hole number are chosen as parameters for investigation of combustion and exhaust gas characteristics on off-road diesel engine.

Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems

  • Tan, Guojin;Shan, Jinghui;Wu, Chunli;Wang, Wensheng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.551-565
    • /
    • 2017
  • In this paper, an analytical approach is proposed for determining vibration characteristics of cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems. This method is based on the Timoshenko beam theory, transfer matrix method and numerical assembly method to obtain natural frequencies and mode shapes. Firstly, the beam is considered to be divided into several segments by spring-mass systems and support points, and four undetermined coefficients of vibration modal function are contained in each sub-segment. The undetermined coefficient matrices at spring-mass systems and pinned supports are obtained by using equilibrium and continuity conditions. Then, the overall matrix of undetermined coefficients for the whole vibration system is obtained by the numerical assembly technique. The natural frequencies and mode shapes of a cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems are obtained from the overall matrix combined with half-interval method and Runge-Kutta method. Finally, two numerical examples are used to verify the validity and reliability of this method, and the effects of cracks on the transverse vibration mode shapes and the rotational mode shapes are compared. The influences of the crack location, depth, position of spring-mass system and other parameters on natural frequencies of non-uniform continuous Timoshenko beam are discussed.

Temperature Measurement Using Single-Mode Fiber Interferometric Sensor (단일모드 광섬유의 간섭계 센서를 이용한 온도측정)

  • 김덕수;이상호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.2
    • /
    • pp.1-5
    • /
    • 1985
  • In this paper, temperature-induced optical phase shifts in single-mode fibers are studied both analytically and experimentally. Temperature sensor using single-mode fiber interferometer is designed and the temperature sensitivity of the sensor system is investigated. This fiber-optic temperature sensor which employs the Mach-Zehnder arrangement is a high sensitivity sensor of phase detection type. In this type, temperature changes are ob-served as a motion of an optical interference fringe pattern. In the measurements using interferometer, one of the important problems is to detect simultaneously the number and direction of fringe displacement resulting from physical perturbations (temperature, pressure, etc.). To realize this, the array detector using multi-mode fiber is designed. By this array detector the number and direction of fringe displacement is Ineasured very conveniently.

  • PDF

Mixed-Mode Stress intensity Factors for Elliptical Corner Cracks in Mechanical Joints by Weight Function Method (가중함수법에 의한 기계적 체결부에 존재하는 타원형 모서리균열의 혼합모드 응력확대계수)

  • Heo, Sung-Pil;Yang, Won-Ho;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.703-713
    • /
    • 2001
  • Mechanical joints such as bolted or riveted joints are widely used in structural components and the reliable determination of the stress intensity factors for corner cracks in mechanical joints is needed to evaluate the safety and fatigue life. This paper analyzes the mixed-mode stress intensity factors of surface and deepest points for quarter elliptical corner cracks in mechanical joints by weight function method and the coefficients included in weight function are determined by finite element analyses for reference loadings. The extended form of the weight function method for two-dimensional mixed-mode to three-dimensional is presented and the number of terms in weight function is determined by comparing the results for the different number of terms. The amount of clearance is an important factor in evaluating the severity of elliptical corner cracks in mechanical joints and even horizontal crack normal to the applied load is under mixed-mode in the case that clearance exists.

On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.701-717
    • /
    • 2006
  • In the existing reports regarding free transverse vibrations of the Euler-Bernoulli beams, most of them studied a uniform beam carrying various concentrated elements (such as point masses, rotary inertias, linear springs, rotational springs, spring-mass systems, ${\ldots}$, etc.) or a stepped beam with one to three step changes in cross-sections but without any attachments. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the multiple-step Euler-Bernoulli beams carrying a number of lumped masses and rotary inertias. First, the coefficient matrices for an intermediate lumped mass (and rotary inertia), left-end support and right-end support of a multiple-step beam are derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of distribution of lumped masses and rotary inertias on the dynamic characteristics of the multiple-step beam are also studied.

The Effects of Spray Parameters on the Flame and Spray Characteristics for Liquid Fuel Spray Flame (액체연료 의 분사연소시 분사조건 이 화염 과 액적군 의 성질 에 미치는 영향)

  • 김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.201-209
    • /
    • 1984
  • In order to examine the effect of initial spray condition on the spray combustion mode and flame characteristics, theoretical analysis was carried out to predict combustion mode and flame structure for various initial distribution of droplets in spray. A system of conservation equations of spray flame in two dimensional axisymmetric for two phase flow was solved by a discrete element method for n-Butylbenzen (C$_{10}$ $H_{14}$). As a results of present study, there are two principal group combustion modes that may occur independently for various initial group combustion numbers in a spray burner. These group combustion modes are termed as an external and internal group combustion mode. The critical group combustion number between the internal and external group combustion mode and the flame characteristics of those flame are also predicted. These results may be used as a basic data in the designing of new combustors as well as proper operating conditions for spray burners.s.