• Title/Summary/Keyword: Mode instability

Search Result 396, Processing Time 0.022 seconds

Effect of Mixing Section Resonance Mode on Dynamic Combustion Characteristics in a Swirl-Stabilized Combustor (스월-안정화 연소기에서 혼합기 공진모드가 동적 연소특성에 미치는 영향)

  • Han, Sunwoo;Lee, Shinwoo;Hwang, Donghyun;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • Hot-firing tests were performed to experimentally confirm the effect of the eigenmode in the fuel-air mixing section on combustion instability by changing mixing section length, inlet mean velocity, equivalence ratio, and swirler geometry. A premixed gas composed of air and ethylene was supplied to the combustion chamber through an mixing section and an axial swirler. As the mixing section length increased, the inlet velocity perturbation decreased, but the combustion instability increased more. It was found that the resonance frequency of the first longitudinal mode in the mixing section shifted to the third longitudinal mode as the length of the mixing section increased. The results implied that the transition of the resonace frquency by changing the length of the mixing section might cause combustion instability.

Nonlinearly Unstable Waves Dominated by Entropy Mode (엔트로피 모드에 의한 비선형 불안정 파동)

  • 윤웅섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 1999
  • This paper is concerned with instability of flow fields which are dominated by the entropy mode with the presence of usual acoustic and vortical modes. These combined modes lead to nonlinear unstable waves which may occur in automobile, aircraft, or rocket engines. In this study instability in a side-burning rocket is investigated. It is shown that the energy growth rate parameters increase with an increase of the energy growth factor. The energy growth rate parameters for turbulent flows are larger than those for laminar flows. It is further shown that unstable wave motions for the high-temperature side-burning rocket are dictated mostly by the entropy mode, somewhat by the vortical mode, and least by the acoustic mode.

  • PDF

Time-resolved Analysis for Electroconvective Instability under Potentiostatic Mode (일정 전위 모드에서의 전기와류 불안정성에 대한 시간-분해 해석)

  • Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.319-324
    • /
    • 2020
  • Electroconvective instability is a non-linear transport phenomenon which can be found in ion-selective transport system such as electrodialysis, Galvanic cell and electrolytic cell. The instability is triggered by the fluctuation of space charge layer in adjacent of ion-selective surface, leading to increase of mass transport rate. Thus, in the aspect of mass transport, the instability has an important meaning. Although recent experimental techniques have opened up an avenue to direct visualize the instability, fundamental investigations have been conducted in limited area due to several experimental limitations. In this work, the electroconvective instability under potentiostatic mode was solved by numerical method in order to demonstrate correlation between current-time curve and the instability behavior. By rigorous time-resolved analysis, the transition behaviors can be divided into three stages; formation of space charge layer - growth of electroconvective instability - steady state. Furthermore, scaling laws of transition time were numerically obtained according to applied voltage as well.

A Study on Combustion-Driven Oscillations in a Surface Burner (표면연소기의 연소진동음에 관한 연구)

  • Han, Heekab;Kwon, Youngpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1582-1590
    • /
    • 1998
  • Combustion-driven oscillations in a surface burner have been investigated to clarify their characteristics. A model combustor is made and the oscillation frequencies are measured for various dimensions of the combustor. It is found that there are two modes of oscillations; one is the 'acoustic mode' at high frequencies, associated with the acoustic mode of the combustion system and the other is the 'combustion mode' at low frequencies around 100 Hz, associated with the instability of the flame. Acoustic mode is excited when the surface burner is placed where the phase of particle velocity leads that of acoustic pressure by $90^{\circ}$, for all the combustion conditions. Combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. Combustion mode is greatly influenced by the inlet temperature of the premixed gas. When the inlet temperature is very high, the combustion mode does not occur.

Combustion Instability and Active Control in a Dump Combustor (덤프 연소기에서의 연소불안정과 능동제어에 대한 연구)

  • Ahn Kyu-Bok;Yu Kenneth;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.445-449
    • /
    • 2005
  • The mixed acoustic-convective mode combustion instability and the possibility of combustion control using a loudspeaker to these instabilities were studied. By changing inlet velocity, combustor length and equivalence ratio, the dynamic pressure signals and the flame structures were simultaneously taken. The results showed that as the combustor length increased and the inlet velocity decreased, the instability frequency decreased and the maximum power spectral densities of the dynamic pressures generally decreased. The instability frequency could be affected by an equivalence ratio over the operating conditions. From the data of close-loop control, as the loudspeaker may work out-of-phase with the natural instability, the optimum time-delay controller was confirmed to be able to reduce the vortex shedding from the mixed acoustic-convective mode combustion instability.

  • PDF

Nature of the Wiggle Instability of Galactic Spiral Shocks

  • Kim, Woong-Tae;Kim, Yonghwi;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2014
  • Gas in disk galaxies interacts nonlinearly with a underlying stellar spiral potential to form galactic spiral shocks. Numerical simulations typically show that these shocks are unstable to the wiggle instability, forming non-axisymmetric structures with high vorticity. While previous studies suggested that the wiggle instability may arise from the Kelvin-Helmholtz instability or orbit crowding of gas elements near the shock, its physical nature remains uncertain. It was even argued that the wiggle instability is of numerical origin, caused by the inability of a numerical code to resolve a shock that is inclined to numerical grids. In this work, we perform a normal-mode linear stability analysis of galactic spiral shocks as a boundary-value problem. We find that the wiggle instability originates physically from the potential vorticity generation at a distorted shock front. As the gas follows galaxy rotation, it periodically passes through multiple shocks, successively increasing its potential vorticity. This sets up a normal-mode that grows exponentially, with a growth rate comparable to the orbital angular frequency. We show that the results of our linear stability analysis are in good agreement with the those of local hydrodynamic simulations of the wiggle instability.

  • PDF

Investigation of Self-Excited Combustion Instabilities in Two Different Combustion Systems

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1246-1257
    • /
    • 2004
  • The objective of this paper is to characterize dynamic pressure traces measured at self-excited combustion instabilities occurring in two combustion systems of different hardware. One system is a model lean premixed gas turbine combustor and the other a fullscale bipropellant liquid rocket thrust chamber. It is commonly observed in both systems that low frequency waves at around 300㎐ are first excited at the onset of combustion instabilities and after a short duration, the instability mode becomes coupled to the resonant acoustic modes of the combustion chamber, the first longitudinal mode for the lean premixed combustor and the first tangential mode for the rocket thrust chamber. Low frequency waves seem to get excited at first since flame shows the higher heat release response on the lower frequency perturbations with the smaller phase differences between heat release and pressure fluctuations. Nonlinear time series analysis of pressure traces reveals that even stable combustion might have chaotic behavior with the positive maximum Lyapunov exponent. Also, pressure fluctuations under combustion instabilities reach a limit cycle or quasi-periodic oscillations at the very similar run conditions, which manifest that a self-excited high frequency instability has strong nonlinear characteristics.

Hybrid Rocket Instability I (하이브리드 로켓 불안정성 I)

  • Rhee, Sun-Jae;Lee, Jung-Pyo;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.81-85
    • /
    • 2012
  • In this paper, the typical combustion instabilities in hybrid rocket were studied. To induce combustion instabilities in the combustor with the diaphragms were mounted, on front and rear of the fuel, and combustion experiments were performed. The calculated theoretical frequencies using Longitudinal Acoustic Mode and Helmholtz Mode are compared with experimental frequencies using FFT analysis. The theoretical calculated results showed good agreements with experimental results are compared.

  • PDF

Theoretical Flow Instability of the Karman Boundary Layer

  • Hwang, Young-Kyu;Lee, Yun-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.358-368
    • /
    • 2000
  • The hydrodynamic stability of the Karman boundary-layer flow due to a rotating disk has been numerically investigated for moving disturbance waves. The disturbed flow over a rotating disk can lead to transition at much lower Re than that of the well-known Type I instability mode. This early transition is due to the excitation of the Type II instability mode of moving disturbances. Presented are the neutral stability results concerning the two instability modes by solving new linear stability equations reformulated not only by considering whole convective terms but by correcting some errors in the previous stability equations. The reformulated stability equations are slightly different with the previous ones. However, the present neutral stability results are considerably different with the previously known ones. It is found that the flow is always stable for a disturbance whose dimensionless wave number k is greater than 0.75.

  • PDF

ANALYTICAL AND NUMERICAL STUDY OF MODE INTERACTIONS IN SHOCK-INDUCED INTERFACIAL INSTABILITY

  • Sohn, Sung-Ik
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.155-172
    • /
    • 2000
  • Mode interactions at Unstable fluid interfaces induced by a shock wave (Richtmyer-Meshkov Instability) are studied both analytically and numerically. The analytical approach is based on a potential flow model with source singularities in incompressible fluids of infinite density ratio. The potential flow model shows that a single bubble has a decaying growth rates at late time and an asymptotic constant radius. Bubble interactions, bubbles of different radii propagates with different velocities and the leading bubbles grow in size at the expense of their neighboring bubbles, are predicted by the potential flow model. This phenomenon is validated by full numerical simulations of the Richtmyer-Meshkov instability in compressible fluids for initial multi-frequency perturbations on the unstable interface.

  • PDF