• Title/Summary/Keyword: Mode Participation Factor

Search Result 26, Processing Time 0.019 seconds

Modal Analysis of Structures (구조물의 모달해석에 관한 연구)

  • Kim, Hong-Jin;Park, Je-Woo;Hwang, Jae-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.665-668
    • /
    • 2008
  • The load distribution to each mode of a structure under seismic loading depends on the modal participation factor. The factor of an idealized analytical model, however, is different to the actual one due to modeling and construction error. Therefore, there exist limits on the estimation of actual behavior. In this study, an identification procedure for participation factor based on vibration test is proposed. The procedure has an advantage that the mode shape vector can also be estimated directly from the participation factor. The numerical simulation using a three story building is performed to evaluate the proposed procedure.

  • PDF

Modal identifiability of a cable-stayed bridge using proper orthogonal decomposition

  • Li, M.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.413-429
    • /
    • 2016
  • The recent research on proper orthogonal decomposition (POD) has revealed the linkage between proper orthogonal modes and linear normal modes. This paper presents an investigation into the modal identifiability of an instrumented cable-stayed bridge using an adapted POD technique with a band-pass filtering scheme. The band-pass POD method is applied to the datasets available for this benchmark study, aiming to identify the vibration modes of the bridge and find out the so-called deficient modes which are unidentifiable under normal excitation conditions. It turns out that the second mode of the bridge cannot be stably identified under weak wind conditions and is therefore regarded as a deficient mode. To judge if the deficient mode is due to its low contribution to the structural response under weak wind conditions, modal coordinates are derived for different modes by the band-pass POD technique and an energy participation factor is defined to evaluate the energy participation of each vibration mode under different wind excitation conditions. From the non-blind datasets, it is found that the vibration modes can be reliably identified only when the energy participation factor exceeds a certain threshold value. With the identified threshold value, modal identifiability in use of the blind datasets from the same structure is examined.

Fluidelastic Instability Characteristics of Helical Steam Generator Tubes

  • Jo Jong Chull;Jhung Myung Jo;Kim Woong Sik;Choi Young Hwan;Kim Hho Jung
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.364-373
    • /
    • 2004
  • This study investigates the fluidelastic instability characteristics of helical steam generator type tubes used in operating nuclear power plants. To obtain a natural frequency, corresponding mode shape, and participation factor, modal analyses using various conditions are performed for helical type tubes. Investigated are the effects of the number of turns, the number of supports, and the status of the inner fluid on the modal and fluidelastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, the corresponding mode shape, and the stability ratio.

Wind-induced responses of Beijing National Stadium

  • Yang, Q.S.;Tian, Y.J.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.239-252
    • /
    • 2011
  • The wind-induced mean, background and resonant responses of Beijing National Stadium are investigated in this paper. Based on the concepts of potential and kinetic energies, the mode participation factors for the background and the resonant components are presented and the dominant modes are identified. The coupling effect between different modes of the resonant response and the coupling effect between the background and resonant responses are analyzed. The coupling effects between the background and resonant components and between different modes are found all negligible. The mean response is approximately analogous to the peak responses induced by the fluctuating wind. The background responses are significant in the fluctuating responses and it is much larger than the resonant responses at the measurement locations.

Low Frequency Squeal Noise Reduction using Mode Participation Factor in Complex Eigenvalue Analysis (복소고유치해석에서 모드기여도 인자를 이용한 저주파 스퀼소음 저감)

  • Park, Jeong Min;Kim, Hyun Soo;Yoon, Moon Young;Boo, Kwang Seok;Kim, Heung Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.325-331
    • /
    • 2013
  • In this study, a complex eigenvalue analysis is implemented to verify the unstable mode of a brake system using ABAQUS software. The component participation factors and component modal participation factors are used to analyze the total contributions from each component and each component mode to a particular unstable system mode. This study shows that the 1.4-kHz unstable system mode comes from mode coupling between the 2nd nodal diametric mode and 3rd lateral axial mode (LAM) in the baseline model. A sensitivity analysis with a linking index is performed to prevent the mode coupling of the component modes. This linking index analysis shows the optimum mass loading position to move away the natural frequency of the 3rd LAM, which contributes to the unstable mode. Finally, a complex eigenvalue analysis is implemented with mass loading in the tie bar position, and no unstable system mode is generated in the low-frequency range (below 2 kHz).

Fretting-Wear Characteristics of Steam Generator Tubes by Foreign Object

  • Jo Jong Chull;Jhung Myung Jo;Kim Woong Sik;Choi Young Hwan;Kim Hho Jung;Kim Tae Hyung
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.442-453
    • /
    • 2003
  • This study investigates the safety assessment of the potential for fretting-wear damages on steam generator (SG) U-tubes caused by foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions are obtained from three-dimensional SG flow calculation using the ATHOS3 code. Modal analyses are performed for the finite element modelings of U-tubes to get the natural frequency, corresponding mode shape and participation factor. The wear rate of U-tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted. Also, discussed in this study is the effect of the flow velocity and vibration of the tube on the remaining life of the tube.

Assessment of Lateral Deformation Shape for High-rise Building Structures (고층건물의 수평변형형상에 대한 평가)

  • 서현주
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.36-43
    • /
    • 1998
  • The purpose of study is to propose numerical assessment methods of lateral deformation shape under lateral loads for regular high-rise buildings. The normalized 1st mode shape is used to assess lateral deformation shape. The assessment method are mass participation factor, representative value by RMS, the mean value, median of the nomalized 1st mode shape. These methods are able to know a fundamental lateral deformation shape of the building and effects of interactive systems numerically. Generally the characteristics of normalized 1st mode shape for various models coincide with numerical assessment results.

  • PDF

Seismic Evaluation of Structural Integrity of Main Cooling-Water Pump by Response Spectrum Analysis (응답스펙트럼법을 이용한 지진하중을 받는 원전용 주냉각수펌프의 내진 건전성 평가)

  • Chung, Chul-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1773-1778
    • /
    • 2010
  • To evaluate the structural integrity of the main cooling-water pump of a nuclear power plant under different seismic conditions, the seismic analysis was performed in accordance with IEEE-STD-344 code. The finite element computer program, ANSYS, was used to perform both mode frequency analysis and response spectrum analysis for the pump assembly. The natural frequencies, the mode shapes, and the mode participation factors were obtained from the results of the mode frequency analysis. The stresses resulting from various loadings and their combinations were within the allowable limits specified in the above-mentioned IEEE code. The results of the seismic evaluation fully satisfied the structural acceptance criteria of the IEEE code. Thus, it was proved that the structural integrity of the pump assembly was satisfactory.

Noise reduction of a vehicle acoustic cavity sample using coupled Structural-Acoustic element analysis (구조-음향 연성해석을 통한 모형차실 모델의 소음저감 기술연구)

  • 김태정;강성종;서정범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.288-294
    • /
    • 1994
  • A study of prediction and qualification techniques for structure borne booming noise is presented in this paper. Result from acoustic normal mode finite element analysis of a 1/2 size vehicle cavity sample model is compared to the that from an experiment. Coupled structural-acoustic analysis is performed on a 1/4 size vehicle cavity sample model surrounded by 2 mm thick normal steel plates. Interior noise levels around passensger's ear position are predicted and reduced by structural modification based on panel participation factor analysis about the sample cavity model. Futhermore, optimization technique in application of anti-vibration pad is studied.

  • PDF

Estimations of Offshore Structure Damages by Modal Perturbation Method (Modal-Perturbation 기법을 이용한 항만 구조물의 손상부위 추정)

  • 조병완;한상주
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.209-217
    • /
    • 1996
  • An Inverse modal perturbation method was applied to estimate the assessments of the damages at the large-scaled marine structure, such as pier or dolphin, from the structural dynamic natural frequencies and mode shape. Vibrations of structural stiffness, natural frequencies and mode shapes from the eigenvalue analysis lead to the modal peturbation equations, which were considered with a second order term. This paper estimates the assessments of the damages for the structure with the decreased stiffness and shows the convergence of perturbation equation.

  • PDF