• Title/Summary/Keyword: Mode II test

Search Result 167, Processing Time 0.033 seconds

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

A Study on the Shot Peening on the High Temperature Fatigue Crack Propagation (쇼트피이닝 가공된 스프링강의 고온 피로균열진전 평가)

  • 박경동;정찬기;하경준
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.264-268
    • /
    • 2001
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, low temperature and high temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room, and high temperature at $25^{\circ}C,\; 50^{\circ}C, \;100^{\circ}C,\; 150^{\circ}C,\; and\; 180^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range $\DeltaK_{th}$ in the early stage of fatigue crack growth (Region I ) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

A Study on the Fatigue Crack Propagation Characteristics for SUP9 Steel at Low Temperature (SUP9강의 저온피로크랙 전파특성에 관한 연구)

  • 박경동;박상오
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.80-87
    • /
    • 2002
  • In this study, CT specimens were prepared from spring steel(SUP9) which was used in suspension of automobile for room temperature and low temperature service. We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, ­3$0^{\circ}C$, ­5$0^{\circ}C$, ­7$0^{\circ}C$ and ­10$0^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

Interlaminar Fracture Characteristics of Self-healing Agent for Polymeric Composites (폴리머 복합재용 자가치료제의 층간파괴특성 평가)

  • Heo K.S.;Yoon S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.435-436
    • /
    • 2006
  • This study focused on the introduction of the self healing technique for polymeric composites and evaluated the healing efficiency by the use of the interlaminar toughness fracture test. The DCPD (dicyclopentadiene) and ENB (5-ethylidene-2-norbornene) were used for the healing agent and the Grubbs' catalyst was used for the catalyst. According to the results, healing efficiency was found to be 37.9%, 22.3%, 26.3%, 22.8%, 30.8%, 30.8%, 33.0%, 33.4% for mode II fraction of 0%, 20%, 35%, 50%, 65%, 80%, 90%, 100%, respectively.

  • PDF

Multidisciplinary optimization of collapsible cylindrical energy absorbers under axial impact load

  • Mirzaei, M.;Akbarshahi, H.;Shakeri, M.;Sadighi, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.325-337
    • /
    • 2012
  • In this article, the multi-objective optimization of cylindrical aluminum tubes under axial impact load is presented. The specific absorbed energy and the maximum crushing force are considered as objective functions. The geometric dimensions of tubes including diameter, length and thickness are chosen as design variables. D/t and L/D ratios are constricted in the range of which collapsing of tubes occurs in concertina or diamond mode. The Non-dominated Sorting Genetic Algorithm-II is applied to obtain the Pareto optimal solutions. A back-propagation neural network is constructed as the surrogate model to formulate the mapping between the design variables and the objective functions. The finite element software ABAQUS/Explicit is used to generate the training and test sets for the artificial neural networks. To validate the results of finite element model, several impact tests are carried out using drop hammer testing machine.

The Effect of Partial Blockage of Flow Passage to Performance Change of a Liquid Rocket Engine (유로 단면 부분 폐쇄가 액체로켓엔진 성능 변화에 미치는 영향)

  • Cho, Won Kook
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.67-72
    • /
    • 2015
  • The analysis has been performed on the blockage effect at the propellant flow passage in a liquid rocket engine. This simulates an example of emergency situation where flow passage is partially blocked. The analysis method has been validated by predicting the pump head and flow rate within 1% precision against the measured data of turbopump-gas generator coupled test. When the oxidizer passage is reduced it is predicted that the mixture ratio decreases, the oxidizer pump head increases and the gas generator pressure increases. When the fuel passage is reduced it is predicted that the mixture ratio increases, fuel flow rate decreases and the fuel pump head increases.

An Effect of Temperature on the Fatigue Crack Propagation Behavior of Spring Steel for Vehicle (차량용 스프링강의 피로거동에 미치는 온도의 영향)

  • 박경동;류찬욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature and low temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$,$-100^{\circ}C$, and $-150^{\circ}C$, in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I)was increased but stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to decrease temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerably higher than that of room temperature in the early stage and stable of fatigue crack growth region.

Fracture Properties of High Strength Concrete Disk with Center-Crack (중앙에 노치가 있는 고강도 콘크리트 디스크의 파괴특성)

  • 진치섭;김희성;박현재;김민철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.161-167
    • /
    • 2001
  • It is difficult to obtain accurate fracture toughness values using three point bending test(TPB) proposed by RILEM committees because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, fracture toughness is easily obtained from crack initiation load in the disk test. In this paper, the fracture properties of high strength concrete disks with center-crack was investigated. For this purpose, the experimental results were compared with the results by finite element analysis(FEA). And the experimental fracture locus was compared with theoretical fracture locus. Also, the results of fracture properties for the degree of concrete strength are presented. It is concluded from this study that results from FEA with maximum stress theory were compared well with the results from experiment. And the degree of concrete strength was contributed to the crack initiation load and fracture toughness, but was not contributed to the failure angle. Also, The discrepancy of fracture locus between the maximum stress theory and the experiment for concrete is considered to depend upon a large energy requirement for inducing the mixed-mode and sliding mode fractures.

TENSILE STREGNTH BETWEEN MACHINABLE CERAMIC AND DENTIN CEMENTED WITH LUTING COMPOSITE RESIN CEMENTS (합착용 복합레진시멘트로 합착한 Machinable Ceramic과 상아질 사이의 인장강도에 대한 실험적 연구)

  • Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.487-501
    • /
    • 1998
  • In the case of CAD/CAM ceramic inlay restorations, if isthmus width is widened too much, it may cause fracture of remaining tooth structure or loss of bonding at the luting interface because of excessive displacement of buccal or lingual cusps under occlusal loads. So to clarify the criterior of widening isthmus width, this study was designed to test the tensile bond strength and bond failure mode between dentin and ceramic cemented with luting composite resin cements. Cylindrical ceramic blocks(Vita Cerec Mark II, d=4mm) were bonded to buccal dentin of 40 freshly extracted third molars with 4 luting composite resin cements(group1 : Scotchbond Resin Cement/Scotchbond Multi-Purpose, group2 : Duolink Resin Cement/ All-Bond 2, group3: Bistite Resin Cement/Ceramics Primer, and group4:Superbond C&B). Tensile bond test was done under universal testing machine using bonding and measuring alignment blocks(${\phi}ilo$ & Urn, 1992). After immersion of fractured samples into 1 % methylene blue for 24 hours, failure mode was analysed under stereomicroscope and SEM. Results: The tensile bond strength of goup 1, 2 & 4 was $13.97{\pm}2.90$ MPa, $16.49{\pm}3.90$ MPa and $16.l7{\pm}4.32$ MPa, respectively. There was no statistical differences(p>0.05). But, group 3 showed significantly lower bond stregnth($5.98{\pm}1.l7$ MPa, p<0.05). In almost all samples, adhesive fractures between dentin and resin cements were observed. But, in group 1, 2 & 4, as bond strength increased, cohesive fracture within resin cement was observed simultaneously. And, in group 3, as bond strength decreased, cohesive fracture between hybrid layer and composite resin cement was also observed. Cohesive fracture within dentin and porcelain adhesive fracture were not observed. In conclusion, although adhesive cements were used in CAD/CAM -fabricated ceramic inlay restorations, the conservative priciples of cavity preparation must be obligated.

  • PDF

Ultimate Strength of Fillet-welded T-joints in Cold-formed Square Hollow Sections-chord web failure mode (냉간성형 각형강관 모살용접 T형 접합부의 최대내력(II)-주관웨브 파괴모드-)

  • Bae, Kyu Woong;Park, Keum Sung;Kang, Chang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.403-411
    • /
    • 2002
  • This paper described the ultimate strength and deformation limit of welded T-joints in cold-formed square hollow sections. Previous studies showed that the T-joint has an obvious peak load. with the failure mode of chord-web buckling at a ratio of branch width to chord width ($\beta$) of above 0.8. Similar to a T-joint with chord-flange failure mode, the strength at a certain deformation limit can be regarded as the ultimate strength of a T-joint Based on the experimental results including tests done by Kato and Zhao, the deformation limit was proposed as 3%B for $10.7{\leq}2{\gamma}(B/T){\leq}42.3$ and $0.8{\leq}{\beta}{\leq}1.0$. The strength formula of CIDECT and those of other researchers were also compared with the test results. Finally, the strength formula based on the column buckling was proposed.