• Title/Summary/Keyword: Mode Frequency Ratio to the Fundamental Frequency

Search Result 27, Processing Time 0.027 seconds

Transverse Vibration of Rectangular Plates Having an Inner Cutout in Water (유공직사각형평판(有孔直四角形平板)의 접수진동(接水振動))

  • H.S.,Lee;K.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.21-34
    • /
    • 1984
  • This paper is concerned with the experimental investigation of transverse vibration characteristics in water of rectangular plates having an inner free cutout. Systematic experiments are carried out to investigate effects of the surrounding water on the added mass and the natural frequency of the plates due to the changes of the aspect ratio, hole size and eccentricity. The main subject is the clamped rectangular plate with a circular hole. For the purpose of comparative evaluations, some other common-type boundary conditions and hole shapes such as ellipses and rectangles are also investigated. Some of the results obtain are as follows; 1) For each given aspect ratio of the plate, there is a hole area ratio which gives a minimum value of the nondimensional frequency parameter for each mode. The hole area ratio increases as the order number of the mode increases. 2) The nondimensinal mass-increment parameter decreases as the aspect ration or the order number of the mode increases. For each given aspect ratio, the parameter the fundamental mode decreases monotonically as the hole area ratio increase. In cases of the second and higher order modes, however, each mode has a hole area ratio which gives a maximum value of the parameter for each aspect ratio more then 2/3. 3) Comparing elliptic holes with rectangular ones with same hole area ratio, nondimensional frequency parameters are almost same for each given ratio of the shorter axises to the longer one. 4) The influences of difference in boundary condion on nondimensional frequency parameters in water are similar to those in air.

  • PDF

Dynamic characteristics of structures with multiple tuned mass dampers

  • Jangid, R.S.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.497-509
    • /
    • 1995
  • Effectiveness of multiple tuned mass dampers (MTMD) in suppressing the dynamic response of base excited structure for first mode vibration is investigated. The effectiveness of the MTMD is expressed by the ratio of the root mean square (RMS) displacement of the structure with MTMD to corresponding displacement without MTMD. The frequency content of base excitation is modelled as a broad-band stationary random process. The MTMD's with uniformly distributed natural frequencies are considered for this purpose. A parametric study is conducted to investigate the fundamental characteristics of the MTMD's and the effect of important parameters on the effectiveness of the MTMD's. The parameters include: the fundamental characteristics of the MTMD system such as damping, mass ratio, total number of MTMD, tuning frequency ratio, frequency spacing of the dampers and frequency content of the base excitation. It has been shown that MTMD can be more effective and more robust than a single TMD with equal mass and damping ratio.

Resonance Characteristics of a 1-3 Piezoelectric Composite Transducer of Circular Arch Shape (원호형 1-3 압전 복합재 변환기의 공진 특성)

  • Kim, Dae-Seung;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.301-312
    • /
    • 2009
  • This paper presents a theoretical approach to calculate the resonant frequency of a thickness vibration mode in the radial direction for a 1-3 piezoelectric composite transducer of circular arch shape. For the composite transducer composed of a piezoelectric ceramic and a polymer, vibration parameters were derived according to the volume ratio of a ceramic, and a vibration characteristic equation was derived from the piezoelectric governing equations with adequate boundary conditions. The fundamental resonant frequencies were calculated numerically and verified by comparing them with those obtained from the finite element analysis and the experiment. The volume ratio and the thickness are more substantial than the curvature radius to determine the fundamental resonant characteristics, and the fundamental resonant frequency becomes higher for the larger volume ratio of the piezoelectric ceramic and for the smaller thickness.

A Study on the Optimal Position Determination of Point Supports to Maximize Fundamental Natural Frequency of Plate (평판의 1차 고유진동수가 최대가 되는 점지지의 최적위치선정에 관한 연구)

  • Hong Do-Kwan;Kim Moon-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1165-1171
    • /
    • 2004
  • The free vibration analyses of the isotropic and CFRP laminated composite rectangular plates with point supports at the fix edge is performed by FEM. We showed optimal position and mode shape of point supports that maximized fundamental natural frequency of the isotropic and CFRP laminated composite rectangular plates by each aspect ratio and the number of point supports.

Dynamic characteristics of multiple inerter-based dampers for suppressing harmonically forced oscillations

  • Chen, Huating;Jia, Shaomin;He, Xuefeng
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.747-762
    • /
    • 2019
  • Based on the ball-screw mechanism, a tuned viscous mass damper (TVMD) has been proposed, which has functions of amplifying physical mass of the system and frequency tuning. Considering the sensitivity of a single TVMD's effectiveness to frequency mistuning like that of the conventional tuned mass damper (TMD) and according to the concept of the conventional multiple tuned mass damper (MTMD), in the present paper, multiple tuned mass viscous dampers (MTVMD) consisting of many tuned mass dampers (TVMD) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTVMD is manufactured by keeping the stiffness and damping constant and varying the mass associated with the lead of the ball-screw type inerter element in the damper. The structure is represented by its mode-generalized system in a specific vibration mode controlled using the mode reduced-order method. Modal properties and fundamental characteristics of the MTVMD-structure system are investigated analytically with the parameters, i.e., the frequency band, the average damping ratio, the tuning frequency ratio, the total number of TVMD and the total mass ratio. It is found that there exists an optimum set of the parameters that makes the frequency response curve of the structure flattened with smaller amplitudes in a wider input frequency range. The effectiveness and robustness of the MTVMD are also discussed in comparison with those of the usual single TVMD (STVMD) and the results shows that the MTVMD is more effective and robust with the same level of total mass.

Ant colony optimization for dynamic stability of laminated composite plates

  • Shafei, Erfan;Shirzad, Akbar
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.105-116
    • /
    • 2017
  • This paper presents the dynamic stability study of laminated composite plates with different force combinations and aspect ratios. Optimum non-diverging stacking is obtained for certain loading combination and aspect ratio. In addition, the stability force is maximized for a definite operating frequency. A dynamic version of the principle of virtual work for laminated composites is used to obtain force-frequency relation. Since dynamic stiffness governs the divergence or flutter, an efficient optimization method is necessary for the response functional and the relevant constraints. In this way, a model based on the ant colony optimization (ACO) algorithm is proposed to search for the proper stacking. The ACO algorithm is used since it treats with large number of dynamic stability parameters. Governing equations are formulated using classic laminate theory (CLT) and von-Karman plate technique. Load-frequency relations are explicitly obtained for fundamental and secondary flutter modes of simply supported composite plate with arbitrary aspect ratio, stacking and boundary load, which are used in optimization process. Obtained results are compared with the finite element method results for validity and accuracy convince. Results revealed that the optimum stacking with stable dynamic response and maximum critical load is in angle-ply mode with almost near-unidirectional fiber orientations for fundamental flutter mode. In addition, short plates behave better than long plates in combined axial-shear load case regarding stable oscillation. The interaction of uniaxial and shear forces intensifies the instability in long plates than short ones which needs low-angle layup orientations to provide required dynamic stiffness. However, a combination of angle-ply and cross-ply stacking with a near-square aspect ratio is appropriate for the composite plate regarding secondary flutter mode.

Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams

  • Wang, Tong;He, Tao;Li, Hongjing
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1139-1153
    • /
    • 2016
  • Elastic constraints are usually simplified as "spring forces" exerted on beam ends without considering the "spring deformation". The partial differential equation governing the free vibrations of a cantilever Bernoulli-Euler beam considering the deformation of elastic constraints is firstly established, and is nondimensionalized to obtain two dimensionless factors, $k_v$ and $k_r$, describing the effects of elastically vertical and rotational end constraints, respectively. Then the frequency equation for the above Bernoulli-Euler beam model is derived using the method of separation of variables. A numerical analysis method is proposed to solve the transcendental frequency equation for the continuous change of the frequency with $k_v$ and $k_r$. Then the mode shape functions are given. Finally, effects of $k_v$ and $k_r$ on free vibration characteristics of the beam with different slenderness ratios are calculated and analyzed. The results indicate that the effects of $k_v$ are larger on higher-order free vibration characteristics than on lower-order ones, and the impact strength decreases with slenderness ratio. Under a relatively larger slenderness ratio, the effects of $k_v$ can be neglected for the fundamental frequency characteristics, while cannot for higher-order ones. However, the effects of $k_r$ are large on both higher- and lower-order free vibration characteristics, and cannot be neglected no matter the slenderness ratio is large or small.

Effects of Finishing of Violin Plate on Its Adsorption and Vibration Modes (바이올린 플레이트의 도장처리(塗裝處理)가 흡습성(吸濕性)과 진동모드에 미치는 영향(影響))

  • Kwon, Ju-Yong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.16-25
    • /
    • 1998
  • This study was carried out to compare vibrational properties and adsorption among shellac, cashew finished plate and untreated plate of Sitka spruce(Picea sitchensis Carr). By the method of statistical regression modeling, the fundamental resonance frequency of finished plate was higher than that of untreated plate. The fundamental resonance frequency of cashew finished plate was higher than that of shellac finished plate. By the method of modal analysis, mode frequency ratio of cashew finished plate was higher than that of shellac finished plate. Amounts of adsorption of finished plate was lower than that of untreated plate, and amount of adsorption of cashew finished plate was lower than that of shellac finished plate. It was clarified that the vibrational properties and adsorption of finished plate were superior to those of untreated plate. The vibrational properties and adsorption of cashew finished plate was superior to those of shellac finished plate.

  • PDF

Free Vibrations of Compressive Members Resting on Linear Elastic Foundation (선형 탄성지반 위에 놓인 압축부재의 자유진동)

  • 이병구;이광범;모정만;신성철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.122-129
    • /
    • 2000
  • The purpose of this study is to investigate both the fundamental and some higher natural frequencies and mode shapes of compressive members resting on the linear elastic foundation. The model of compressive member is based on the classical Bernoulli-Euler beam theory. The differential equation governing free vibrations of such members subjected to an axial load is derived and solved numerically for calculating the natural frequencies and mode shapes. The Improved Euler method is used to integrate the differential equation and the Determinant Search method combined with the Regula-Falsi method to determine the natural frequencies, respectively. In numerical examples, the hinged-hinged, hinged-clamped, clamped-hinged and clamped-clamped end constraints are considered. The convergence analysis is conducted for determining the available step size in the Improved Euler method. The validation of theories developed herein is also conducted by comparing the numerical results between this study and SAP 90. The non-dimensional frequency parameters are presented as the non-dimensional system parameters: section ratio, modulus parameter and load parameter. Also typical mode shapes are presented.

  • PDF

An Experimental Study of Instability Mode Analysis in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서의 연소 불안정 모드 분석에 관한 실험적 연구)

  • Lee, Jang-Su;Kim, Min-Ki;Park, Sung-Soon;Lee, Jong-Guen;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • The main objective of this study was investigation of combustion instability characteristics in a lean partially premixed gas turbine dump combustor. Dynamic pressure transducers were located on combustor and inlet section to observe combustion pressure oscillation and difference at each measurement places. Also flame shape and $CH^*$ chemiluminescence were measured using a high speed ICCD camera. The combustor length was varied in order to have different acoustic characteristics from 800 to 1090 mm. The first section of this paper shows the stability map in model gas turbine combustor. And the effects of combustor length, mixture velocity in the mixing section and equivalence ratio were studied by the pressure perturbation and heat release oscillation. Also, the instability frequency and mode analysis were studied in last two sections. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.