• Title/Summary/Keyword: Mode Converter

Search Result 1,214, Processing Time 0.024 seconds

Digital-controlled Single-phase Power-factor Correction Converter Operating in Critical Current Conduction Mode (임계전류도통모드로 동작하는 디지털제어 단상 역률개선 컨버터)

  • Jeong, Gang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2570-2578
    • /
    • 2010
  • This paper presents a digital-controlled single-phase power-factor correction (PFC) converter operating in critical current conduction mode. The proposed converter utilizes the DC-DC boost converter topology for the PFC and operates the inductor current in critical conduction mode. Because the proposed converter is controlled digitally using a micom, its control circuit is simplified and the converter operates more effectively. This paper first explains the operational principles of the proposed converter and then analyzes the converter circuit. And this paper explains the implementation method of proposed converter with a detail design example, which is divided into software and circuit design parts. Also, it is shown through the experimental results of the prototype converter by the designed circuit parameters that the proposed converter has good performance as a single-phase PFC converter.

A Study on Reduction of Conducted-Noise by the Expanded Node of the Forward Converter (포워드 컨버터의 노드확장에 의한 전도성 노이즈 감소에 관한 연구)

  • Yi, Hee-Hoon;Kwon, Young-Ahn
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.374-379
    • /
    • 2006
  • The switch mode power supply is a source of EMI with other equipment as well as with its own proper operation because of rapid changes in voltages and currents within a switching converter. The EMI is transmitted in two forms: radiated and conducted. Conducted noise consists of two categories known as the differential mode and the common mode. Common mode noise current is a major source of EMI in the switch mode Power supply. Recently, a current balancing technique has been studied to reduce the common mode noise. This paper investigates the reduction of common mode noise according to a node expansion of the switch mode power supply which is based on a current balancing technique. In this paper, seven PCB patterns of the forward converter are manufactured and experimented.

Mode Control Design of Dual Buck Converter Using Variable Frequency to Voltage Converter (주파수 전압 변환을 이용한 듀얼 모드 벅 변환기 모드 제어 설계)

  • Lee, Tae-Heon;Kim, Jong-Gu;So, Jin-Woo;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.864-870
    • /
    • 2017
  • This paper describes a Dual Buck Converter with mode control using variable Frequency to Voltage for portable devices requiring wide load current. The inherent problems of PLL compensation and efficiency degradation in light load current that the conventional hysteretic buck converter has faced have been resolved by using the proposed Dual buck converter which include improved PFM Mode not to require compensation. The proposed mode controller can also improve the difficulty of detecting the load change of the mode controller, which is the main circuit of the conventional dual mode buck converter, and the slow mode switching speed. the proposed mode controller has mode switching time of at least 1.5us. The proposed DC-DC buck converter was implemented by using $0.18{\mu}m$ CMOS process and die size was $1.38mm{\times}1.37mm$. The post simulation results with inductor and capacitor including parasitic elements showed that the proposed circuit received the input of 2.7~3.3V and generated output of 1.2V with the output ripple voltage had the PFM mode of 65mV and 16mV at the fixed switching frequency of 2MHz in hysteretic mode under load currents of 1~500mA. The maximum efficiency of the proposed dual-mode buck converter is 95% at 80mA and is more than 85% efficient under load currents of 1~500mA.

Design and Control Strategy for Autonomous and Seamless Mode Transition of High Efficiency Bidirectional DC-DC Converter for ISG Systems (ISG 시스템용 고효율 양방향 DC-DC 컨버터의 설계 및 자율적이며 끊김없는 모드전환을 위한 제어전략)

  • Park, Jun-Sung;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this study, a bidirectional DC-DC converter for idle stop and go (ISG) is developed to reduce fuel consumption. A three-phase non-isolated half-bridge converter is selected through a design method by considering efficiency and volume. According to the state of charge of the batteries at both the low-voltage and high-voltage sides, buck mode, which charges a low-voltage battery from the generated motor energy, and boost mode, which provides power to the motor from the low- and high-voltage battery sides, are required in the ISG system. Hence, an autonomous and seamless bidirectional control method using a variable current limiter is proposed for mode change. A 1.8 kW engineering sample of the proposed converter has been built and tested to verify the validity of the proposed concept. The maximum efficiencies, including gate driver and control circuit losses, are 96.4% in charging mode and 96.1% in discharging mode.

A Study on the Continuous Current Mode $S^4$-PFC Converter using Auxiliary Resonant Circuit (공진형 보조 회로를 이용한 연속 전류 모드 $S^4$-PFC 컨버터에 관한 연구)

  • Han, Dae-Hee;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Kwon, Soon-Do
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.200-203
    • /
    • 2002
  • This paper presents Continuous-current mode of $S^4$-PFC(Single-Stage Single-switch Power Factor Correction) converter. Proposed converter operates in the continueous current mode(CCM) at full load and discontinuous current mode(DCM) at light load. So, characteristic of proposed converter is no bus voltage stress and Zero Voltage Switching(ZVS) using resonant auxiliary circuit. And. This paper presents characteristic of $S^4$-PFC converter and effect of circuit parameter of proposed converter through the input inductor, PFC capacitor's variation. All of these theory and characteristic verified through the experiment with a 72W(12V, 6A), $90^{kHz}$ prototype converter.

  • PDF

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.169-176
    • /
    • 2005
  • In this paper, a DC and small-signal AC modeling for the active-clamp, ful1-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a dc counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM(Continuous conduction mode) boost and DCM(Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

Current-to-Voltage Converter Using Current-Mode Multiple Reset and its Application to Photometric Sensors

  • Park, Jae-Hyoun;Yoon, Hyung-Do
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Using a current-mode multiple reset, a current-to-voltage(I-V) converter with a wide dynamic range was produced. The converter consists of a trans-impedance amplifier(TIA), an analog-to-digital converter(ADC), and an N-bit counter. The digital output of the I-V converter is composed of higher N bits and lower bits, obtained from the N-bit counter and the ADC, respectively. For an input current that has departed from the linear region of the TIA, the counter increases its digital output, this determines a reset current which is subtracted from the input current of the I-V converter. This current-mode reset is repeated until the input current of the TIA lies in the linear region. This I-V converter is realized using 0.35 ${\mu}m$ LSI technology. It is shown that the proposed I-V converter can increase the maximum input current by a factor of $2^N$ and widen the dynamic range by $6^N$. Additionally, the I-V converter is successfully applied to a photometric sensor.

A Study on High Efficiency Boost DC-DC Converter of Discontinuous Current Mode Control (전류불연속 제어의 고효율 부스트 DC-DC 컨버터에 관한 연구)

  • Kwak Dong-Kurl;Kim Choon-Sam
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.431-436
    • /
    • 2005
  • This paper studies a novel boost DC-DC converter operated high efficiency for discontinuous current mode (DCM) control. The converter worked in DCM eliminates the complicated circuit control requirement, reduces a number of components, and reduces the used reactive components size. In the general DCM converter, the switching devices are turned-on the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve the zero voltage switching (ZVS) at the switching turn-off, the proposed converter is constructed by using a new loss-less snubber circuit. Soft-switched operation of the proposed boost converter is verified by digital simulation and experimental results. A new boost converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of boost DC-DC converter is high.

Efficiency Improvement of New Soft Switching Type Buck-Boost Chopper (새로운 소프트 스위칭형 벅-부스터 컨버터의 효율개선)

  • 고강훈;곽동걸;서기영;권순걸;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.44-48
    • /
    • 1998
  • In the buck-boost DC-DC converter which is used at a certain situation such as in factories where loads often change a lot, the switches in the device make big energy loss in operating at Buck-Boost Mode due to hard switching and are affected by lots of stresses which decrease the efficiency rate of the converter. In order to improve this problem, to decrease the loss of snubber and switching, it has been investigated that zero voltage switching mode and zero current switching mode which make the operation of switches with soft switching. For the more sophisticated and advanced device, this paper is presented the Partial Resonant Soft Switching Mode Power Converter which is adapted the power converter having the partial resonant soft switching mode, that makes switches operate when the resonant current or voltage becomes zero by making the resonant circuit partially at turning on and off of the switches with suitable layout of the resonant elements and switch elements in the converter. Also, this paper includes the analysis and simulation of the Partial Resonant type Buck-Boost Chopper.

  • PDF

On Teaching Switched Mode Power Supplies - A Converter with Limited Duty Cycle

  • Himmelstoss, Felix A.
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.667-672
    • /
    • 2010
  • A way how to teach a general understanding of switched mode power supplies (SMPS) is shown. A fourth order PWM DC-to-DC converter with limited duty cycle range is treated as an example and a survey over important data (maximum voltage and current ratings for the elements, rms- values for the semiconductor devices and a rough approximation of the losses) of the circuit is given. Furthermore, a converter model based on duty ratio averaging is established. Continuous mode of operation is used. The results make it possible to estimate the applicability of the given converter structure and offer sufficient material for the calculation, design, and analysis and give a better insight into switched mode energy conversion.