• Title/Summary/Keyword: Mode Controller

Search Result 1,724, Processing Time 0.027 seconds

Low-earth orbiting satellite multi-output converter design and verification by using EDF modeling (EDF 모델링을 이용한 저궤도위성 다중 출력 컨버터 설계 및 검증)

  • Yun, SeokTeak;Yang, JeongHwan
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.76-79
    • /
    • 2012
  • Satellite power system is critical for mission design and survival operation. Accordingly power conversion circuit has to stable design and verify for operation condition change (load, voltage, thermal condition). however, multi-stage make complicate for modeling and get all state solution. In this paper present all state solution for multi-stage converter by using Extended Describing Function(EDF) modelling. EDF modelling has merit to solve complex circuit but it has limit too. Because of fundamental approximation, EDF modeling is not match all topology. Consequently, we verify passible topology for EDF modeling and stable design multi-stage converter.

Target Speech Detection Using Gaussian Mixture Model of Frequency Bandwise Power Ratio for GSC-Based Beamforming (GSC 기반 빔포밍을 위한 주파수 밴드별 전력비 분포의 혼합 가우시안 모델을 이용한 목표 음성신호의 검출)

  • Chang, Hyungwook;Kim, Youngil;Jeong, Sangbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • Noise reduction is necessary to compensate for the degradation of recognition performance by various types of noises. Among many noise reduction techniques using microphone array, generalized sidelobe canceller (GSC) has been widely applied to reduce nonstationary noises. The performance of GSC is directly affected by its adaptation mode controller (AMC). That is, accurate target speech detection is essential to guarantee the sufficient noise reduction in pure noise intervals and the less distortion in target speech intervals. Thus, this paper proposes an improved AMC design technique in which the power ratio of the output of fixed beamforming to that of blocking matrix is calculated frequency bandwise and probabilistically modeled by mixture Gaussians for each class. Experimental results show that the proposed algorithm outperforms conventional AMCs in receiver operating curves (ROC) and output SNRs.

Hierarchical Voltage Regulation of a DFIG-based Wind Power Plant Using a Reactive Current Injection Loop with the Maximum Voltage Dip for a Grid Fault (최대 전압 강하에 비례하는 무효전류 공급 루프를 이용한 DFIG 풍력단지의 계층전압제어)

  • Park, Geon;Kim, Jinho;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1334-1339
    • /
    • 2016
  • In a power grid that has a high wind power penetration, the fast voltage support of a wind power plant (WPP) during the grid fault is required to stabilize the grid voltage. This paper proposes a voltage control scheme of a doubly-fed induction generator (DFIG)-based WPP that can promptly support the voltage of the point of common coupling (PCC) of a WPP during the grid fault. In the proposed scheme, the WPP and DFIG controllers operate in a voltage control mode. The DFIG controller employs two control loops: a maximum voltage dip-dependent reactive current injection loop and a reactive power to voltage loop. The former injects the reactive power in proportion to the maximum voltage dip; the latter injects the reactive power in proportion to the available reactive power capability of a DFIG. The former improves the performance of the conventional voltage control scheme, which uses the latter only, by increasing the reactive power as a function of the maximum voltage dip. The performance of the proposed scheme was investigated for a 100-MW WPP consisting of 20 units of a 5-MW DFIG under various grid fault scenarios using an EMTP-RV simulator. The simulation results indicate that the proposed scheme promptly supports the PCC voltage during the fault under various fault conditions by increasing the reactive current with the maximum voltage dip.

Design of Semi-Active Tendon for Vibration Control of Large Structures (대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

Design of Highly Integrated 3-Channel DC-DC Converter Using PTWS for Wearable AMOLED (PTWS를 적용한 웨어러블 AMOLED용 고집적화 3-채널 DC-DC 변환기 설계)

  • Jeon, Seung-Ki;Lee, Hui-Jin;Choi, Ho-Yong
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1061-1067
    • /
    • 2019
  • In this paper, a highly integrated 3-channel DC-DC converter is designed using power transistor width scaling (PTWS). For positive voltage, $V_{POS}$, a boost converter is designed using the set-time variable pulse width modultaion (SPWM) dual-mode and PTWS to improve efficiency at light load. For negative voltage, $V_{NEG}$, a 0.5 x regulated inverting charge pump is designed with pulse skipping modulation (PSM) controller to reduce power consumption, and for an additional positive voltage, $V_{AVDD}$, a LDO circuit is designed. The proposed DC-DC converter has been designed using a $0.18{\mu}m$ BCDMOS process. Simulation results show that the proposed converter has power efficiency of 56%~90% for load current range of 1 mA~70 mA and output ripple voltage less than 5 mV at positive voltage.

Implementation and Measurement of Protection Circuits for Step-down DC-DC Converter Using 0.18um CMOS Process (0.18um CMOS 공정을 이용한 강압형 DC-DC 컨버터 보호회로 구현 및 측정)

  • Song, Won-Ju;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.265-271
    • /
    • 2018
  • DC-DC buck converter is a critical building block in the power management integrated circuit (PMIC) architecture for the portable devices such as cellular phone, personal digital assistance (PDA) because of its power efficiency over a wide range of conversion ratio. To ensure a safe operation, avoid unexpected damages and enhance the reliability of the converter, fully-integrated protection circuits such as over voltage protection (OVP), under voltage lock out (UVLO), startup, and thermal shutdown (TSD) blocks are designed. In this paper, these three fully-integrated protection circuit blocks are proposed for use in the DC-DC buck converter. The buck converter with proposed protection blocks is operated with a switching frequency of 1 MHz in continuous conduction mode (CCM). In order to verify the proposed scheme, the buck converter has been designed using a 180 nm CMOS technology. The UVLO circuit is designed to track the input voltage and turns on/off the buck converter when the input voltage is higher/lower than 2.6 V, respectively. The OVP circuit blocks the buck converter's operation when the input voltage is over 3.3 V, thereby preventing the destruction of the devices inside the controller IC. The TSD circuit shuts down the converter's operation when the temperature is over $85^{\circ}C$. In order to verify the proposed scheme, these protection circuits were firstly verified through the simulation in SPICE. The proposed protection circuits were then fabricated and the measured results showed a good matching with the simulation results.

Research of Small Gas Turbine Engine Control Logic by Engine Failure Mode Simulation (소형 가스터빈엔진 고장모드 모사를 통한 제어로직 연구)

  • Lee, Kyungjae;Kim, Sunguk;Back, Kyeungmi;Rhee, Dongho;Kang, Young Seok;Kho, Sunghee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.88-97
    • /
    • 2021
  • The controller of the gas turbine engine is a component that needs to be developed for the development of the gas turbine engine because it is impossible to get the technology transferred from the engine manufacturer due to the import and export regulation. As a part of the engine control logic research, the Korea Aerospace Research Institute conducted a failure diagnostic research using a small gas turbine engine. Before simulating the engine fault, the ground test was performed to analyze normal behavior and performance of engine. Afterwards, the control logic analysis test equipment was established to simulate various engine fault. It is intended to provide background knowledge to engine control logic research for various engine failure conditions.

Deep Learning Based Emergency Response Traffic Signal Control System

  • Jeong-In, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.121-129
    • /
    • 2023
  • In this paper, we developed a traffic signal control system for emergency situations that can minimize loss of property and life by actively controlling traffic signals in a certain section in response to emergency situations. When the emergency vehicle terminal transmits an emergency signal including identification information and GPS information, the surrounding image is obtained from the camera, and the object is analyzed based on deep learning to output object information having information such as the location, type, and size of the object. After generating information tracking this object and detecting the signal system, the signal system is switched to emergency mode to identify and track the emergency vehicle based on the received GPS information, and to transmit emergency control signals based on the emergency vehicle's traveling route. It is a system that can be transmitted to a signal controller. This system prevents the emergency vehicle from being blocked by an emergency control signal that is applied first according to an emergency signal, thereby minimizing loss of life and property due to traffic obstacles.

The optimization study of core power control based on meta-heuristic algorithm for China initiative accelerator driven subcritical system

  • Jin-Yang Li;Jun-Liang Du;Long Gu;You-Peng Zhang;Cong Lin;Yong-Quan Wang;Xing-Chen Zhou;Huan Lin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.452-459
    • /
    • 2023
  • The core power control is an important issue for the study of dynamic characteristics in China initiative accelerator driven subcritical system (CiADS), which has direct impact on the control strategy and safety analysis process. The CiADS is an experimental facility that is only controlled by the proton beam intensity without considering the control rods in the current engineering design stage. In order to get the optimized operation scheme with the stable and reliable features, the variation of beam intensity using the continuous and periodic control approaches has been adopted, and the change of collimator and the adjusting of duty ratio have been proposed in the power control process. Considering the neutronics and the thermal-hydraulics characteristics in CiADS, the physical model for the core power control has been established by means of the point reactor kinetics method and the lumped parameter method. Moreover, the multi-inputs single-output (MISO) logical structure for the power control process has been constructed using proportional integral derivative (PID) controller, and the meta-heuristic algorithm has been employed to obtain the global optimized parameters for the stable running mode without producing large perturbations. Finally, the verification and validation of the control method have been tested based on the reference scenarios in considering the disturbances of spallation neutron source and inlet temperature respectively, where all the numerical results reveal that the optimization method has satisfactory performance in the CiADS core power control scenarios.

A Study on the Step-up DC-DC Converter for PV System Application Under Variable Input Voltage Condition (가변 입력 전압 조건하에서 태양광 시스템 적용을 위한 승압형 DC-DC 컨버터 연구)

  • Ju-Yeop Lee;Se-Cheon Oh;Il-Hyeong Jo;Ye-Jin Kim;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.677-684
    • /
    • 2024
  • In this paper, the design method of a step-up DC-DC converter based on PWM control was studied for solar power system application. The operating principle of the switching mode step-up type DC-DC converter was analyzed and the basic design method was studied. For photovoltaic system application, an output voltage feedback control algorithm based on PWM control was developed to enable the converter's output voltage to follow the target voltage under variable input conditions. As a procedure to verify the effectiveness of the proposed algorithm, a prototype of a step-up DC-DC converter with a single feedback output voltage was designed and made by boosting the input voltage DC 10V to DC 30V. In experiments with prototypes, it was confirmed that the output voltage of the oscilloscope and LCD accurately followed the target output voltage. In the performance evaluation test, it was confirmed that the output voltage of the oscilloscope and LCD accurately followed the target output voltage by showing an error rate within 1 [%] of the reference voltage.