• 제목/요약/키워드: Modal decomposition

검색결과 136건 처리시간 0.024초

Field Measurement and Modal Identification of Various Structures for Structural Health Monitoring

  • Yoshida, Akihiko;Tamura, Yukio
    • 국제초고층학회논문집
    • /
    • 제4권1호
    • /
    • pp.9-25
    • /
    • 2015
  • Field measurements of various structures have been conducted for many purposes. Measurement data obtained by field measurement is very useful to determine vibration characteristics including dynamic characteristics such as the damping ratio, natural frequency, and mode shape of a structure. In addition, results of field measurements and modal identification can be used for modal updating of FEM analysis, for checking the efficiency of damping devices and so on. This paper shows some examples of field measurements and modal identification for structural health monitoring. As the first example, changes of dynamic characteristics of a 15-story office building in four construction stages from the foundation stage to completion are described. The dynamic characteristics of each construction stage were modeled as accurately as possible by FEM, and the stiffness of the main structural frame was evaluated and the FEM results were compared with measurements performed on non-load-bearing elements. Simple FEM modal updating was also applied. As the next example, full-scale measurements were also carried out on a high-rise chimney, and the efficiency of the tuned mass damper was investigated by using two kinds of modal identification techniques. Good correspondence was shown with vibration characteristics obtained by the 2DOF-RD technique and the Frequency Domain Decomposition method. As the last example, the wind-induced response using RTK-GPS and the feasibility of hybrid use of FEM analysis and RTK-GPS for confirming the integrity of structures during strong typhoons were shown. The member stresses obtained by hybrid use of FEM analysis and RTK-GPS were close to the member stresses measured by strain gauges.

효율적 모우드시험을 위한 가진점과 응답측정점의 결정 (Determination of Excitation and Response Measurement Points for an Efficient Modal Testing)

  • 박종필;김광준;박영진
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1643-1653
    • /
    • 1992
  • 본 연구에서는 해석적 모우드해석 결과인 모우드 형상벡터를 이용하여 효과적 인 가진점과 응답측정점을 선정하는 기존의 두 방법에 대해 간략히 기술하고 비교검토 하고자 하였다. 첫번째 방법은 주파수응답함수에서 관심있는 모우드의 공진피크치와 관련있는 모우드상수를 이용하는 것이고, 두번째 방법은 계의 관심있는 모우드에 대한 동적 특성을 가장 잘 나타낼 수 있도록 특이치분해(singular value decomposition) 기 법을 적용함으로써 계의 대표자유도(master degree of freedom) 지점들을 선저하는 것 이다.우선 단순한 계인 외팔보아 알루미늄평판에 대해 두 방법을 적용함으로써 비 교검토하였고, 이 결과로부터 두번째 방법의 우수성을 확인할 수 있었다. 이에 따라 보다 복잡한 형상을 갖는 승용차의 부분구조물인 조향휠고정대 (deck cross member : DCM)에 대해서 두번째 방법을 이용하여 모우드 시험을 수행하고 그 결과에 대하여 논 하였다.

System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network

  • Kim, Jeong-Tae;Ho, Duc-Duy;Nguyen, Khac-Duy;Hong, Dong-Soo;Shin, Sung Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • 제11권5호
    • /
    • pp.533-553
    • /
    • 2013
  • In this paper, system identification of a cable-stayed bridge in Korea, the Hwamyung Bridge, is performed using vibration responses measured by a wireless sensor system. First, an acceleration based-wireless sensor system is employed for the structural health monitoring of the bridge, and wireless sensor nodes are deployed on a deck, a pylon and several selected cables. Second, modal parameters of the bridge are obtained both from measured vibration responses and finite element (FE) analysis. Frequency domain decomposition and stochastic subspace identification methods are used to obtain the modal parameters from the measured vibration responses. The FE model of the bridge is established using commercial FE software package. Third, structural properties of the bridge are updated using a modal sensitivity-based method. The updating work improves the accuracy of the FE model so that structural behaviors of the bridge can be represented better using the updated FE model. Finally, cable forces of the selected cables are also identified and compared with both design and lift-off test values.

System identification of a super high-rise building via a stochastic subspace approach

  • Faravelli, Lucia;Ubertini, Filippo;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제7권2호
    • /
    • pp.133-152
    • /
    • 2011
  • System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.

Determination of optimal accelerometer locations using modal sensitivity for identifying a structure

  • Kwon, Soon-Jung;Woo, Sungkwon;Shin, Soobong
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.629-640
    • /
    • 2008
  • A new algorithm is proposed to determine optimal accelerometer locations (OAL) when a structure is identified by frequency domain system identification (SI) method. As a result, a guideline is presented for selecting OAL which can reflect modal response of a structure properly. The guideline is to provide a minimum number of necessary accelerometers with the variation in the number of measurable target modes. To determine OAL for SI applications effectively, the modal sensitivity effective independence distribution vector (MS-EIDV) is developed with the likelihood function of measurements. By maximizing the likelihood of the occurrence of the measurements relative to the predictions, Fisher Information Matrix (FIM) is derived as a function of mode shape sensitivity. This paper also proposes a statistical approach in determining the structural parameters with a presumed parameter error which reflects the epistemic paradox between the determination of OAL and the application of a SI scheme. Numerical simulations have been carried out to examine the proposed OAL algorithm. A two-span multi-girder bridge and a two-span truss bridge were used for the simulation studies. To overcome a rank deficiency frequently occurred in inverting a FIM, the singular value decomposition scheme has been applied.

Full-scale measurements of wind effects and modal parameter identification of Yingxian wooden tower

  • Chen, Bo;Yang, Qingshan;Wang, Ke;Wang, Linan
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.609-627
    • /
    • 2013
  • The Yingxian wooden tower in China is currently the tallest wooden tower in the world. It was built in 1056 AD and is 65.86 m high. Field measurements of wind speed and wind-induced response of this tower are conducted. The wind characteristics, including the average wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and velocity spectrum are investigated. The power spectral density and the root-mean-square wind-induced acceleration are analyzed. The structural modal parameters of this tower are identified with two different methods, including the Empirical Mode Decomposition (EMD) combined with the Random Decrement Technique (RDT) and Hilbert transform technique, and the stochastic subspace identification (SSI) method. Results show that strong wind is coming predominantly from the West-South of the tower which is in the same direction as the inclination of the structure. The Von Karman spectrum can describe the spectrum of wind speed well. Wind-induced torsional vibration obviously occurs in this tower. The natural frequencies identified by EMD, RDT and Hilbert Transform are close to those identified by SSI method, but there is obvious difference between the identified damping ratios for the first two modes.

서해대교 사장교의 동특성 추출 : II. 고유진동수와 감쇠비 (Modal Parameter Extraction of Seohae Cable-stayed Bridge : II. Natural Frequency and Damping Ratio)

  • 김병화;박종칠
    • 대한토목학회논문집
    • /
    • 제28권5A호
    • /
    • pp.641-647
    • /
    • 2008
  • 본 논문은 상시진동데이터로부터 구조물의 고유진동수 및 감쇠비를 추정하는 기법을 소개한다. 제안된 기법은 TDD기법에서 추출된 모드형상과 상호상관신호로부터 직교 잡음이 제거된 자유진동함수를 추출하고 시스템 인식기술을 적용하여서 각 모드별 고유진동수와 감쇠비를 추정한다. 제안 알고리즘의 정확도는 수치적으로 기존의 기법과 비교분석 되었다. 제안 알고리즘의 현장 적용성 검토는 서해대교 보강형의 수직방향 가속도에 대한 상시진동데이터를 통하여 검증되었으며, 총 24개의 저차모드가 추출되었다.

Synchrosqueezed wavelet transform for frequency and damping identification from noisy signals

  • Montejo, Luis A.;Vidot-Vega, Aidcer L.
    • Smart Structures and Systems
    • /
    • 제9권5호
    • /
    • pp.441-459
    • /
    • 2012
  • Identification of vibration parameters from the analysis of the dynamic response of a structure plays a key role in current health monitoring systems. This study evaluates the capabilities of the recently developed Synchrosqueezed Wavelet Transform (SWT) to extract instant frequencies and damping values from the simulated noise-contaminated response of a structure. Two approaches to estimate the modal damping ratio from the results of the SWT are presented. The results obtained are compared to other signal processing methods based on Continuous Wavelet (CWT) and Hilbert-Huang (HHT) transforms. It was found that the time-frequency representation obtained via SWT is sharped than the obtained using just the CWT and it allows a more robust extraction of the individual modal responses than using the HHT. However, the identification of damping ratios is more stable when the CWT coefficients are employed.

다경간 연속 교량 구조물의 지진응답 평가를 위한 개선된 모드별 비탄성 정적 해석법에 관한 연구 (Improved Modal Pushover Analysis of Multi-span Continuous Bridge Structures)

  • 곽효경;홍성진;김영상
    • 대한토목학회논문집
    • /
    • 제26권3A호
    • /
    • pp.497-512
    • /
    • 2006
  • 본 논문에서는 구조물의 모든 진동모드를 고려하는 모드별 비탄성 정적 해석법을 바탕으로 하여 다경간 연속 교량 구조물의 내진 역량을 평가할 수 있는 간단하고 효율적인 해석 방법을 제시하였다. 동일한 항복 후 기울기비와 근사 탄성변형 형상의 개념을 새롭게 도입하여 비탄성 구조계에 모드별 중첩이론을 직접 적용함으로써 발생하던 기존의 간섭 효과를 소거시켰다. 나아가 앞서 언급한 두 가지 개념과 적절한 분포하중을 정적 해석에 사용함으로써 더욱 간편한 해석 과정을 통하여 모든 종류의 교량 구조물에 대한 동적 거동을 예측하는 것이 가능해 졌다. 마지막으로 제안한 방법의 효용성과 적용성을 확인하기 위하여 4가지의 교량 모델에 대한 비선형 시간이력 해석과 간편화된 비선형 정적 해석의 변위예측 결과를 비교 분석하였다.

동적모드 AFM 마이크로캔틸레버의 적합직교모드 추출 (Proper Orthogonal Mode Extraction of AFM Microcantilevers in Dynamic Mode)

  • 조홍모;홍상혁;권원태;이수일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.264-268
    • /
    • 2007
  • Proper orthogonal decomposition(POD) is a method for extracting bases for modal decomposition from the ensemble of signals. We verified the connection of the proper orthogonal modes(POMs) and the linear normal modes(LNMs) through MATLAB simulation for the simple cantilever and AFM microcantilever models. Using the POMs, we can analyze and model effectively the dynamic mode of AFM microcantievers.

  • PDF