• Title/Summary/Keyword: Modal analysis method

Search Result 1,172, Processing Time 0.028 seconds

Optimum amount of additive mass in scaling of operational mode shapes

  • Khatibi, M.M.;Ashory, M.R.;Albooyeh, A.R.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.733-750
    • /
    • 2011
  • Recently, identification of modal parameters using the response only data has attracted considerable attention particularly where the classic modal testing methods is difficult to conduct. One drawback of the response only data, also known as Operational Modal Analysis (OMA), is that only the unscaled mode shapes can be obtained which restricts the applications of OMA. The Mass change method is a usual way to scale the operational mode shapes. In this article a new method is proposed to optimize the additive mass for scaling of the unscaled mode shapes from OMA for which a priori knowledge of the Finite Element model of structure is required. It is shown that the total error of the scaled mode shapes is minimized using the proposed method. The method is validated using a numerical case study of a beam. Moreover, the experimental results of a clamped-clamped beam demonstrate the applicability of the method.

Application of Substructure Synthesis Method for Analysis of Acoustic System (음향계의 해석을 위한 부분구조합성법의 적용)

  • 오재응;고상철;조용구
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.737-746
    • /
    • 1997
  • The substructure synthesis method is used for making it easy to analyze vibration systems generally in vibration field. In the past, this method has been to be used mainly because of shortage of computer memory and CPU time. But recently this method is used for analyzing complex structure or identifying the characteristics of systems precisely. The purpose of this study is to develop acoustic substructure synthesis method that can be applied to acoustic modal analysis of complex acoustic systems. Acoustic modal analysis method to be introduced here is a method that analyze acoustic natural mode shape of the complex acoustic system by the principle of CMS(component mode synthesis method). This paper describes the acoustic modal analysis of the acoustic finite element model of simple expansion pipe by acoustic substructure synthesis method. The resutls of acoustic modal analysis analyzed by Acoustic substructure synthesis method and the results by FEM(finite element method) shows good agreement.

  • PDF

Modeling of Beam Structures from Modal Parameters (모달 파라미터를 이용한 보 구조물의 모델링)

  • Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF

Mode identifiability of a cable-stayed bridge using modal contribution index

  • Huang, Tian-Li;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • The modal identification of large civil structures such as bridges under the ambient vibrational conditions has been widely investigated during the past decade. Many operational modal analysis methods have been proposed and successfully used for identifying the dynamic characteristics of the constructed bridges in service. However, there is very limited research available on reliable criteria for the robustness of these identified modal parameters of the bridge structures. In this study, two time-domain operational modal analysis methods, the data-driven stochastic subspace identification (SSI-DATA) method and the covariance-driven stochastic subspace identification (SSI-COV) method, are employed to identify the modal parameters from field recorded ambient acceleration data. On the basis of the SSI-DATA method, the modal contribution indexes of all identified modes to the measured acceleration data are computed by using the Kalman filter, and their applicability to evaluate the robustness of identified modes is also investigated. Here, the benchmark problem, developed by Hong Kong Polytechnic University with field acceleration measurements under different excitation conditions of a cable-stayed bridge, is adopted to show the effectiveness of the proposed method. The results from the benchmark study show that the robustness of identified modes can be judged by using their modal contributions to the measured vibration data. A critical value of modal contribution index of 2% for a reliable identifiability of modal parameters is roughly suggested for the benchmark problem.

Theoretical research on the identification method of bridge dynamic parameters using free decay response

  • Tan, Guo-Jin;Cheng, Yong-Chun;Liu, Han-Bing;Wang, Long-Lin
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • Input excitation and output response of structure are needed in conventional modal analysis methods. However, input excitation is often difficult to be obtained in the dynamic load test of bridge structures. Therefore, what attracts engineers' attention is how to get dynamic parameters from the output response. In this paper, a structural experimental modal analysis method is introduced, which can be used to conveniently obtain dynamic parameters of the structure from the free decay response. With known damping coefficients, this analysis method can be used to identify the natural frequencies and the mode shapes of MDOF structures. Based on the modal analysis theory, the mathematical relationship of damping ratio and frequency is obtained. By using this mathematical relationship to improve the previous method, an improved experimental modal analysis method is proposed in this paper. This improved method can overcome the deficiencies of the previous method, which can not identify damping ratios and requires damping coefficients in advance. Additionally, this improved method can also identify the natural frequencies, mode shapes and damping ratios of the bridge only from the free decay response, and ensure the stability of identification process by using modern mathematical means. Finally, the feasibility and effectiveness of this method are demonstrated by a numerical example of a simply supported reinforced concrete beam.

Modeling and Its Modal Analysis for Distributed Parameter Frame Structures using Exact Dynamic Elements (엄밀한 동적 요소를 이용한 프레임 구조물의 모델링 및 모드 해석)

  • 김종욱;홍성욱
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.966-974
    • /
    • 1999
  • This paper introduces modeling and its modal analysis procedure for exact and closed form solution of in-plane vibrations of general Timoshenko frame structures using exact dynamic element method(EDEM). The derivation procedure of the exact system dynamic matrices for Timoshenko beam frames is described. A new modal analysis procedure is also proposed since the conventional modal analysis schemes are not adequate for the proposed, exact system dynamic matrix. The proposed method provides exact modal parameters as well as all kinds of closed form solutions for general frame structures. Two numerical examples are presented for validating and illustrating the proposed method. The numerical study proves that the proposed method is useful for dynamic analysis of frame structures.

  • PDF

Analysis of Durability of Torsion Beam Axle Using Modal Stress Recovery Method (모달 응력 회복법(Modal Stress Recovery)을 이용한 Torsion Beam Axle 내구해석)

  • Ko, Jun-Bok;Lim, Young-Hoon;Lee, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1339-1344
    • /
    • 2010
  • MSM (Modal Superposition Method) is a technique for analyzing structural durability by taking the vibration characteristics into consideration. In this paper, MSR (Modal Stress Recovery) method, which is similar to MSM, was reviewed to check its validity as a durability analysis method. The MSR method directly calculates the modal displacement time history in multibody dynamics analysis; as a result, the total analysis time is shorter than that of MSM method. We conduct durability analysis using the MSR method and a durability test of a torsion beam axle that is affected by various road loads within the natural frequency of the beam axle. The analysis results for critical location and durability were in good agreement with the respective test results. Therefore, durability analysis using the MSR method is effective in predicting the durability of the structures of various dynamic systems.

Mode shape identification using response spectrum in experimental modal analysis

  • Babakhani, Behrouz;Rahami, Hossein;Mohammadi, Reza Karami
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.345-361
    • /
    • 2018
  • The set of processes performed to determine the dynamic characteristics of the constructed structures is named experimental modal analysis. Using experimental modal analysis and interpreting its results, structural failure can be assessed and then it would be possible to plan for their repair and maintenance. The purpose of the experimental modal analysis is to determine the resonance frequencies, mode shapes and Mode damping for the structure. Diverse methods for determining the shape of the mode by various researchers have been presented. There are pros and cons for each of these methods. This paper presents a method for determining the mode shape of the structures using the response spectrum in the experimental modal analysis. In the first part, the principles of the proposed method are described. Then, to check the accuracy of the results obtained from the proposed method, single and multiple degrees of freedom models were numerically and experimentally investigated.

Generalized Modal Analysis of Asymmetrical Rotor System Using Modulated Coordinates (변조 좌표계를 이용한 비대칭 회전체계의 일반화된 모드해석)

  • 서정환;홍성욱;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.813-820
    • /
    • 2003
  • Conventional modal analysis techniques are known to be inappropriate for asymmetrical rotor systems, when the equations of motion are written in the stationary coordinates, due to the presence of time varying parameters. This paper presents a generalized modal analysis method for asymmetrical rotor systems in the stationary coordinates, employing the modulated coordinates and the lambda matrix formulation. A numerical example with a flexible asymmetric rotor model is provided to demonstrate the effectiveness of the proposed modal analysis method. As an application of the proposed method, modal analysis is also performed with an open cracked rotor system.

Generalized modal analysis of asymmetrical rotor system using modulated coordinates (변조 좌표계를 이용한 비대칭 회전체계의 일반화된 모드해석)

  • 서정환;홍성욱;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.526-531
    • /
    • 2003
  • Conventional modal analysis techniques are known to be inappropriate for asymmetrical rotor systems. when the equations of motion are written in the stationary coordinates, due to the presence of time varying parameters. This paper presents a generalized modal analysis method for asymmetrical rotor systems in the stationary coordinates, employing the modulated coordinates and the lambda matrix formulation. A numerical example with a flexible asymmetric rotor model is provided to demonstrate the effectiveness of the proposed modal analysis method. As an application of the proposed method, modal analysis is also performed with an open cracked rotor system.

  • PDF