• Title/Summary/Keyword: Modal Vibration

Search Result 1,887, Processing Time 0.026 seconds

Performance Evaluation of a Nonlinear Cable Damper for Stay Cables Using Wind Vibration Analysis (사장교 케이블의 풍진동 해석을 통한 비선형 댐퍼의 성능 검증)

  • Kim, Saang-Bum;Lee, Sung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.603-606
    • /
    • 2007
  • Wind induced vibration of a stay cable with a nonlinear friction damper is investigated. Stay cables are likely to vibrate under several wind-related environments, and cable dampers can be used to suppress the excessive vibrations of stay cables. Conventional design of cable dampers are based on the equivalent modal damping achieved by the cable damper. However, the equivalent modal damping achieved by nonlinear dampers are depend on the vibration characteristics like the amplitude of the vibration. In this paper, not only the achieved equivalent modal damping, but also the vibration levels under gust wind are analyzed through the time domain buffeting analysis. Numerical simulation results show the efficacy of a nonlinear friction damper for suppressing the excessive vibration of a stay cable.

  • PDF

Mode identifiability of a cable-stayed bridge based on a Bayesian method

  • Zhang, Feng-Liang;Ni, Yi-Qing;Ni, Yan-Chun
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.471-489
    • /
    • 2016
  • Modal identification based on ambient vibration data has attracted extensive attention in the past few decades. Since the excitation for ambient vibration tests is mainly from the environmental effects such as wind and traffic loading and no artificial excitation is applied, the signal to noise (s/n) ratio of the data acquired plays an important role in mode identifiability. Under ambient vibration conditions, certain modes may not be identifiable due to a low s/n ratio. This paper presents a study on the mode identifiability of an instrumented cable-stayed bridge with the use of acceleration response data measured by a long-term structural health monitoring system. A recently developed fast Bayesian FFT method is utilized to perform output-only modal identification. In addition to identifying the most probable values (MPVs) of modal parameters, the associated posterior uncertainties can be obtained by this method. Likewise, the power spectral density of modal force can be identified, and thus it is possible to obtain the modal s/n ratio. This provides an efficient way to investigate the mode identifiability. Three groups of data are utilized in this study: the first one is 10 data sets including six collected under normal wind conditions and four collected during typhoons; the second one is three data sets with wind speeds of about 7.5 m/s; and the third one is some blind data. The first two groups of data are used to perform ambient modal identification and help to estimate a critical value of the s/n ratio above which the deficient mode is identifiable, while the third group of data is used to perform verification. A couple of fundamental modes are identified, including the ones in the vertical and transverse directions respectively and coupled in both directions. The uncertainty and s/n ratio of the deficient mode are investigated and discussed. A critical value of the modal s/n ratio is suggested to evaluate the mode identifiability of the deficient mode. The work presented in this paper could provide a base for the vibration-based condition assessment in future.

Wind and traffic-induced variation of dynamic characteristics of a cable-stayed bridge - benchmark study

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Lee, Kwang-Suk;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.491-522
    • /
    • 2016
  • A benchmark problem for modal identification of a cable-stayed bridge was proposed by a research team at Hong Kong Polytechnic University. By taking an instrumented cable-stayed bridge as a test bed, nineteen sets of vibration records with known/unknown excitations were provided to invited researchers. In this paper, the vibration responses of the bridge under a series of excitation conditions are examined to estimate the wind and traffic-induced variations of its dynamic characteristics. Firstly, two output-only experimental modal identification methods are selected. Secondly, the bridge and its monitoring system are described and the nineteen sets of vibration records are analyzed in time-domain and frequency-domain. Excitations sources of blind datasets are predicted based on the analysis of excitation conditions of known datasets. Thirdly, modal parameters are extracted by using the two selected output-only modal identification methods. The identified modal parameters are examined with respect to at least two different conditions such as traffic- and typhoon-induced loadings. Finally, the typhoon-induced effects on dynamic characteristics of the bridge are estimated by analyzing the relationship between the wind velocity and the modal parameters.

Vibration measures for local structures through modal tests (모달시험을 통한 국부 구조물 방진대책 수립)

  • Kwon, Jong Hyun;Kim, Mun Su;Yang, Sung Boong;Lee, Won Seok;Lee, Bong Min
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.14-18
    • /
    • 2017
  • The Lashing bridge and radar mast of ship are upright structures so they are generally exposed to excessive vibration. Recently, the use of low speed main engines for improving fuel efficiency has been increasing, and the excitation frequencies of the main engine are moving to the low frequency band. If the excitation frequencies are coincident with the natural frequencies of the local structure, excessive vibration occurs during main engine operating condition. The modal test is to experimentally determine resonance frequency, mode shape, and damping, which are vibration characteristics of a mechanical structure under dynamic external force. Through this study, the vibration characteristics of the structure are obtained by modal tests and the low vibration measure is applied to the local structures.

  • PDF

Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records (상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정)

  • Kim Jae Min;Feng. M. Q.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

The Strap Vibration Characteristics in $5{\times}5$ Grid Exposed to Axial Flow (축방향 유속에 노출된 $5{\times}5$ 지지격자 스트랩의 진동특성)

  • Kim, Kyoung-Hong;Park, Nam-Gyu;Kim, Kyoung-Ju;Suh, Jung-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.911-916
    • /
    • 2012
  • It is important to identify dynamic characteristics of nuclear fuel components. Since the fuel always exposed to turbulent flow, the dynamic contact between grids and rods is one of the fuel failure modes. The dynamic behavior of grids in nuclear fuels is quite complex, since two pairs of spring support are placed in the limited space. The strap in a cell has single spring and double dimples and this paper focuses on investigation of the grid strap(Test Fuel Strap, TFS) vibration in one cell. To identify the grid strap vibration, modal analysis of the strap is performed using Finite Element Method (FEM). Modal testing on a $5{\times}5$ grid structure without rods is performed. The modal testing results are compared to analytic results. In addition, random test considering rod effect is performed about a $5{\times}5$ grid with rods under real contact condition in the air. Finally, the strap vibration of a $5{\times}5$ fuel bundle in INvestigation of Flow INduced vIbraTion(INFINIT) facility is measured in real fluid velocity condition without heating. It is shown that modal frequencies from the test are almost equal to those peak frequencies in the INFINIT test.

  • PDF

Mode identifiability of a cable-stayed bridge using modal contribution index

  • Huang, Tian-Li;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • The modal identification of large civil structures such as bridges under the ambient vibrational conditions has been widely investigated during the past decade. Many operational modal analysis methods have been proposed and successfully used for identifying the dynamic characteristics of the constructed bridges in service. However, there is very limited research available on reliable criteria for the robustness of these identified modal parameters of the bridge structures. In this study, two time-domain operational modal analysis methods, the data-driven stochastic subspace identification (SSI-DATA) method and the covariance-driven stochastic subspace identification (SSI-COV) method, are employed to identify the modal parameters from field recorded ambient acceleration data. On the basis of the SSI-DATA method, the modal contribution indexes of all identified modes to the measured acceleration data are computed by using the Kalman filter, and their applicability to evaluate the robustness of identified modes is also investigated. Here, the benchmark problem, developed by Hong Kong Polytechnic University with field acceleration measurements under different excitation conditions of a cable-stayed bridge, is adopted to show the effectiveness of the proposed method. The results from the benchmark study show that the robustness of identified modes can be judged by using their modal contributions to the measured vibration data. A critical value of modal contribution index of 2% for a reliable identifiability of modal parameters is roughly suggested for the benchmark problem.

Modal Test of Missile Structure with Live Warhead and Propellant (활성탄 전기체 동특성 시험기법 연구)

  • Kang, Hwi-Won;Jeon, Byoung-Hee;Yang, Myung-Seog
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.57-60
    • /
    • 2005
  • Modal parameters of a structure are the important factor to control the missile maneuver. In general, a dummy structure is used for the modal test of missile structure instead of the real warhead and propellant because there may be the danger of a explosion by the electric shock of test equipment, such as the exciter and the power amplifier. However, the modal testing of a real missile structure is required to acquire the modal parameters and to analyze the missile performance accurately. The new test system and technique are developed to get rid of the danger and secure the safety during the testing. This test system is made of with the computer network system and controlled remote from test site. Using His new test system, the modal test of real missile structure is performed successfully and its validity is proven.

  • PDF