• Title/Summary/Keyword: Modal Test

Search Result 717, Processing Time 0.025 seconds

Development of an Analysis Model for UPS System of LNG Receiving Terminal Facilities (천연가스 생산기지 내 UPS시스템의 해석모델 개발)

  • Kook, Seung-Kyu;Hong, Seong-Kyeong;Kim, Joon-Ho;Choi, Won-Mog;Park, Young-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.539-545
    • /
    • 2016
  • UPS system in the liquefied natural gas(LNG) receiving terminal is one of the fundamental equipment that need to sustain operation during earthquake. In this study, modal identification test of UPS system was performed based on IEEE Std. 693-2005 and natural frequencies and modal damping, mode shapes had been identified. In addition, tri-axial time history test was performed to check the behavior and stress of the equipment during earthquake. Eigenvalue analysis was performed and analysis model was modified by reflecting the results of the test. Static analysis by dead weight and response spectrum analysis were performed to compare the combined stresses with the stress results of test. Dynamic characteristics and combined stresses under seismic load condition of the improved analysis model were similar to the test results and in this regard the compatibility was proved.

Ground Vibration Test for Korea Sounding Rocket - II PFM (과학로켓 2호(KSR-II) 준비행 모델의 지상 진동 시험)

  • 우성현;김홍배;문상무;이상설;문남진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.546-551
    • /
    • 2001
  • Space Test Department at KARI(Korea Aerospace Research Institute) plans to carry out the GVT(Ground Vibration Test) for the KSR(Korea Sounding Rocket)-III FM(Flight Model) which is being developed by Space Technology R&D Division. KSR-III will be an intermediate to the launch vehicle capable of carrying satellites to their orbits. GVT offers very important information to predict the behavior of KSR in its operation, and to develop the flight control and aerodynamic analysis. For development of test facilities, testing and analysis methods which can be used for the future test, Space Test Department has performed the GVT with KSR-II PFM(Proto-Flight Model) at Satellite Integration & Test Center of KARl This paper discusses the procedures, techniques and the results of it. In this test, to simulate free-free condition, test object hung in the air by 4 bungee cords specially devised. The GVT was carried out using pure random excitation technique with MIMO(Multi-Input-Multi-Output) method with three electromagnetic shakers, and poly-reference parameter estimation was used to identify the modal parameters. As the result of the test, 11 mode shapes and modal parameters below 200㎐ were identified and compared with analytical results.

  • PDF

Identify Modal Parameter by The Output Response of Structure Using Smart Sensor System (스마트 센서 시스템을 이용한 구조물의 모달 인자 추출)

  • Lee, Woo-Sang;Heo, Gwang-Hee;Park, Ki-Tae;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.149-160
    • /
    • 2008
  • In this study, the research was carried out on how to identify the modal parameter by acquiring the output response of the structure only through the smart sensor system. The objective of this research is to verify the performance and the on-site adaptability of the smart sensor system that have been actively researched as the advanced measuring system so far. Smart Sensor System was developed so that the real-time dynamic measurement can be performed by means of MEMS-type accelerated sensor, 8 bit CPU, wireless MODEM. In the modal parameter identification test, random excitation was added to the cantilever beam, and then the response of the structure was obtained using the smart sensor system and the wire measurement system respectively. In analyzing the data, modal parameter was identified using NExT & ERA algorithm. Furthermore, the optimal measurement location was selected through EOT algorithm in order to obtain the qualified output response. Result of the test, it was possible to verify the on-site applicability of the smart sensor.

Analysis on the Squeal Noise of Wheel Brake System for Tilting Train (틸팅차량용 휠 제동장치의 스퀼 소음 해석)

  • Cha, Jung-Kwon;Park, Yeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.98-105
    • /
    • 2010
  • Squeal, a kind of self-excited vibration, is generated by the friction between the disc and the friction materials. It occurs at the ending stage of the braking process, and radiates and audible frequency range of 1 kHz to 10 kHz. Squeal is generated from unstability because of the coupling between the translation and rotation of the system. This instability is caused by the follower force and follower force is normal component of the friction force. In this paper modal analysis of wheel brake system was performed in order to predict the squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. A finite element model of that brake system was made. Some parts of a real brake was selected and modeled. Modal analysis method performs analyses of each brake system component. Experimental modal analysis was performed for each brake components and experimental results were compared with analytical results from FEM. To predict the dynamic unstability of a whole system, the complex eigenvalue analysis for assembly modeling of components confirmed by modal analysis is performed. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. The complex eigenvalue analysis results compared with real train test.

The Evaluation of Physical Properties and Hand of Bast/Man-Made Fiber Mixed Fabrics (마와 인조섬유 교직물의 물성 및 평가)

  • 김순심;양진숙;최종명
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.6
    • /
    • pp.828-837
    • /
    • 2000
  • The purpose of this study was to evaluate the physical properties and the hand of bast/man made fiber mixed fabrics compared to linen. The mixed fabrics were made by rayon, polyester and modal fiber as warp yarn, and ramie, flax, rayon/flax and cotton/flax as weft yarn. The crease resistance, drape, tensile strength/extension, water absorbancy and warmth retention were measured for test fabrics. The mechanical properties were measured by Kawabata system, and the hand value was calculated by previously developed equation. The results obtained from this study were as follows: The crease resistance and drape properties of bast/man made fiber mixed fabrics were improved compared to those of linen. The tensile strength of polyester/bast fiber mixed fabrics increased compared to those of linen, but rayon/bast and modal/bast fiber mired fabrics decreased. The extension of all mixed fabrics was increased compared to that of linen. The rayon/ramie and modal/ramie mixed fabrics showed lower warmth retention than linen. The mixed fabrics used rayon and modal as warp yarn showed higher water absorbancy than linen. The Koshi and Hari hand value of all mixed fabrics showed lower than those of linen. Fukurami hand value showed little difference between mixed fabrics and linen. Shari, Kishimi, and Shinayakasa hand value of rayon/bast and modal/bast fiber mixed fabrics showed higher than those of linen.

  • PDF

A Study on Strengthened Genetic Algorithm for Multi-Modal and Multiobjective Optimization (강화된 유전 알고리듬을 이용한 다극 및 다목적 최적화에 관한 연구)

  • Lee Won-Bo;Park Seong-Jun;Yoon En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 1997
  • An optimization system, APROGA II using genetic algorithm, was developed to solve multi-modal and multiobjective problems. To begin with, Multi-Niche Crowding(MNC) algorithm was used for multi-modal optimization problem. Secondly, a new algorithm was suggested for multiobjective optimization problem. Pareto dominance tournaments and Sharing on the non-dominated frontier was applied to it to obtain multiple objectives. APROGA II uses these two algorithms and the system has three search engines(previous APROGA search engine, multi-modal search engine and multiobjective search engine). Besides, this system can handle binary and discrete variables. And the validity of APROGA II was proved by solving several test functions and case study problems successfully.

  • PDF

Development of the Virtual Driving Environment for the AWS ECU Test Platform of the Bi-modal Tram (저상굴절 궤도차량의 AWS ECU 테스트 플랫폼을 위한 가상 주행환경 개발)

  • Choi, Seong-Hoon;Park, Tea-Won;Lee, Soo-Ho;Moon, Kyung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.283-290
    • /
    • 2007
  • A bi-modal tram has been developed to offer an advanced transportation service compared with existing vehicles. The All-Wheel-Steering system is applied to the bi-modal tram to satisfy the required steering performance because the bi-modal tram has extended length and articulated mechanism. An ECU for the steering system is essential to steer wheels on 2nd and 3rd axles by the specific AWS algorithm with the prescribed driving condition. The Hardware-In-the-Loop Simulation(HILS) system is planned for the purpose of evaluating the steering system of the bi-modal tram. There are kinematic links with the hydraulic actuator to steer wheels on each 2nd and 3rd axles and also same steering mechanism as the actual vehicle is in the HILS system. Controlling the movement of hydraulic actuator which reflects the lateral steering reaction force on each wheel is the key to realize the HILS system, but the reaction force is continuously changed according to various driving conditions. Therefore, the simulation through the multi-body dynamics model is used to obtain the required forces.

  • PDF

Modal analysis and multi-objective optimization of lightweight analysis of the main beam of the concrete spreader

  • Zhang, Shiying;Song, Bo;Zhang, Ke;Chen, Hongliang;Zou, Defang;Liu, Chang;Zhu, Chunxia;Li, Dong;Yu, Wenda
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.465-478
    • /
    • 2021
  • On the premise of ensuring that the static performance of the concrete spreader is met, the first-order natural frequency of the concrete spreader is increased, and the weight of the main beam is reduced. ANSYS is used as an analysis tool to perform modal analysis on the concrete spreader. The natural frequency, mode shape and modal test verification will be obtained to ensure the accuracy of finite element model analysis. Using the ANSYS designxplorer module, the size of the main beam is set, and the response surface model between the parameter variables and the optimization objective is established according to the experimental design points. Screening algorithm and MOGA algorithm are used to multi-optimize the stress, first-order natural frequency and girder weight, and the optimal solution is obtained by comparison. The results of modal analysis are consistent with those of the experiment, and a set of optimal solutions is obtained through the optimization algorithm. The optimal solution obtained can meet the purpose of increasing the first-order natural frequency of the concrete spreader and reducing the weight of the main beam under the premise of ensuring the overall dynamic and static performance of the concrete spreader.

Bayesian model update for damage detection of a steel plate girder bridge

  • Xin Zhou;Feng-Liang Zhang;Yoshinao Goi;Chul-Woo Kim
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.29-43
    • /
    • 2023
  • This study investigates the possibility of damage detection of a real bridge by means of a modal parameter-based finite element (FE) model update. Field moving vehicle experiments were conducted on an actual steel plate girder bridge. In the damage experiment, cracks were applied to the bridge to simulate damage states. A fast Bayesian FFT method was employed to identify and quantify uncertainties of the modal parameters then these modal parameters were used in the Bayesian model update. Material properties and boundary conditions are taken as uncertainties and updated in the model update process. Observations showed that although some differences existed in the results obtained from different model classes, the discrepancy between modal parameters of the FE model and those experimentally obtained was reduced after the model update process, and the updated parameters in the numerical model were indeed affected by the damage. The importance of boundary conditions in the model updating process is also observed. The capability of the MCMC model update method for application to the actual bridge structure is assessed, and the limitation of FE model update in damage detection of bridges using only modal parameters is observed.

Development of a multi-modal imaging system for single-gamma and fluorescence fusion images

  • Young Been Han;Seong Jong Hong;Ho-Young Lee;Seong Hyun Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3844-3853
    • /
    • 2023
  • Although radiation and chemotherapy methods for cancer therapy have advanced significantly, surgical resection is still recommended for most cancers. Therefore, intraoperative imaging studies have emerged as a surgical tool for identifying tumor margins. Intraoperative imaging has been examined using conventional imaging devices, such as optical near-infrared probes, gamma probes, and ultrasound devices. However, each modality has its limitations, such as depth penetration and spatial resolution. To overcome these limitations, hybrid imaging modalities and tracer studies are being developed. In a previous study, a multi-modal laparoscope with silicon photo-multiplier (SiPM)-based gamma detection acquired a 1 s interval gamma image. However, improvements in the near-infrared fluorophore (NIRF) signal intensity and gamma image central defects are needed to further evaluate the usefulness of multi-modal systems. In this study, an attempt was made to change the NIRF image acquisition method and the SiPM-based gamma detector to improve the source detection ability and reduce the image acquisition time. The performance of the multi-modal system using a complementary metal oxide semiconductor and modified SiPM gamma detector was evaluated in a phantom test. In future studies, a multi-modal system will be further optimized for pilot preclinical studies.