• 제목/요약/키워드: Modal Superposition Method

검색결과 74건 처리시간 0.028초

Extension of a semi-analytical approach to determine natural frequencies and mode shapes of a multi-span orthotropic bridge deck

  • Rezaiguia, A.;Fisli, Y.;Ellagoune, S.;Laefer, D.F.;Ouelaa, N.
    • Structural Engineering and Mechanics
    • /
    • 제43권1호
    • /
    • pp.71-87
    • /
    • 2012
  • This paper extends a single equation, semi-analytical approach for three-span bridges to multi-span ones for the rapid and precise determination of natural frequencies and natural mode shapes of an orthotropic, multi-span plate. This method can be used to study the dynamic interaction between bridges and vehicles. It is based on the modal superposition method taking into account intermodal coupling to determine natural frequencies and mode shapes of a bridge deck. In this paper, a four- and a five-span orthotropic roadway bridge deck are compared in the first 10 modes with a finite element method analysis using ANSYS software. This simplified implementation matches numerical modeling within 2% in all cases. This paper verifies that applicability of a single formula approach as a simpler alternative to finite element modeling.

지지구조의 유연성을 고려한 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석 (Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor Considering the Flexibility of Supporting Structure)

  • 정경문;서찬희;김명규;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.859-865
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered bearing and flexible supporting structures by using the finite element method and the mode superposition method. The appropriate finite element equations for polygon mirror are described by rotating annular sector element using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. The rotating components except for the polygon mirror are modeled by Timoshenko beam element including the gyroscopic effect. The flexible supporting structures are modeled by using a 4-node tetrahedron element and 4-node shell element with rotational degrees of freedom. Finite element equations of each component of the polygon mirror scanner motor and the flexible supporting structures are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. The rigid link constraints are also imposed at the interface area between sleeve and sintered bearing to describe the physical motion at this interface. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem by using the restarted Arnoldi iteration method. Unbalance responses in time and frequency domain are performed by superposing the eigenvalues and eigenvectors from the free vibration analysis. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results. This research also shows that the flexibility of supporting structures plays an important role in determining the unbalance response of the polygon mirror scanner motor.

  • PDF

중주파수 응답해석을 위한 축소 기법 (Model Order Reduction for Mid-Frequency Response Analysis)

  • 고진환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.135-138
    • /
    • 2009
  • Most of the studies use model order reduction for low frequency (LF) response analysis due to their high computational efficiency. In LF response analysis, one of model order reduction, algebraic substructuring (AS) retains all LF modes when using the modal superposition. However, in mid-frequency (MF) response analysis, the LF modes make very little contribution and also increase the number of retained modes, which leads to loss of computational efficiency. Therefore, MF response analysis should consider low truncated modes to improve the computational efficiency. The current work is focused on improving the computational efficiency using a AS and a frequency sweep algorithm. Finite element simulation for a MEMS resonator array showed that the performance of the presented method is superior to a conventional method.

  • PDF

3차원 다물체동역학 시뮬레이션 기반 자기부상열차와 3경간 연속교 동적상호작용 해석 (Dynamic Interaction Analysis of Maglev and 3 Span Continuous Guideway Based on 3 D Multibody Dynamic Simulation)

  • 한종부;김기정
    • 한국CDE학회논문집
    • /
    • 제21권4호
    • /
    • pp.409-416
    • /
    • 2016
  • This study aims to investigate dynamic interaction characteristics between Maglev train and 3 span continuous guideway. The integrated model including a 3D full vehicle model based on multibody dynamics, flexible guideway by a modal superposition method, and levitation electromagnets with the feedback controller is proposed. The proposed model was applied to the Incheon Airport Maglev Railway to analyze the dynamic response of the vehicle and guideway from the numerical simulation. Using field test data of air gap and guideway deflections, obtained from the Incheon Airport Maglev Railway, the analysis method is verified. From the results, it is confirmed that Maglev railway system are designed and constructed safely according to the design criteria.

웨이퍼 가공기에서 회전 원판의 동특성에 미치는 불균일 장력의 영향 분석 (Analysis of Non-uniform Tension Effect on Dynamic Characteristics of Spinning Circular Plates in the Wafer Cutting Machine)

  • 임경화
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.324-330
    • /
    • 1998
  • The forced vibration analysis of the outer-clamped spinnig annular disk with arbitrary in-plane is formulated to investigate the influence of non-uniform tension on the cutting accuracy of wafer cutting machine. The arbitrary in-plan force along the outer edge of an annular plate is expressed as a Fourier series. Galerkin method and modal superposition method are employed to obtain the forced responses under the static force and the impulse force in astationary coordinate. Through qualitative and quantitative analyses, it can be found that forced and impulse responses are sensitive to the non-uniformity of in-plane force, which can bring a bad effect to the accuracy of wafer cutting process. Also, in case of a spinning disk with non-uniform in-plane force, critical speed is required to define in a different way, compared with conventional definition in axi-symmetrical spinning disk.

  • PDF

진동응답을 최소화하는 비구속형 제진보의 제진 부위 최적설계 (Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses)

  • 이두호
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.829-835
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beam is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. Vibration responses are calculated by using the modal superposition principle, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in suppressing nitration responses by means of unconstrained damping layer treatment.

적층고무받침이 설치된 단층 래티스 돔의 동적 거동 특성에 관한 연구 (A Study on the Characteristics of Dynamic Behavior of Single Layer Latticed Domes with Laminated Rubber Bearing)

  • 한상을;배상달
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.425-432
    • /
    • 2001
  • This paper presents the studies of the characteristics of dynamic behavior of single layer latticed domes with laminated rubber bearing and establishes the effectiveness of the system. The base isolation system installed between base and structures reduces the responses due to earthquake motions and increases the natural period of structures. Numerical analysis is carried out using modal superposition method and Newmark-βmethod which is linear acceleration method with (equation omitted) : 1/2 and β : 1/6. The time interval Δt for response calculation is 0.001 sec. Damping ratio is 2 % as Rayleigh damping and El Centro NS(1940) as earthquake motion is the input excitation data. The acceleration response of dome with base isolation is reduced to 30 % of the response of non-isolation system. From the results of the numerical studies on the models, it is confirmed that base isolation system effectively suppresses the responses of the domes subjected to horizontal earthquakes.

  • PDF

점탄성 감쇠기가 설치된 구조물의해석방법에 관한 연구 (A comparative study on the methods for analyses of viscoelastically damped structures)

  • 김진구
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.135-142
    • /
    • 1999
  • Although the vibration control effects of viscoelastic dampers in building structures have been well proved by numerous theoretical and practical examples it is difficult to find an outstanding method for analysis of viscoelastically damped structures satisfying both exactness and efficiency. Thus in this study four analysis methods for viscoelastically damped structures that are currently used or can be applied for the those system are speculated and compared to provide bass for developing a better method for analysis of viscoelastically damped structures. The seismic response time history inter-story drfts and analysis time recorded by computer simulation of four different methods are compared. Among these methods complex modal superposition approach turns out to be ecomomic and accurate procedure.

  • PDF

컴퓨터 시뮬레이션을 이용한 동응력 이력 계산기술 개발 (Calculation of Dynamic Stress Time History of a Component Using Computer Simulation)

  • 박찬종;박태원
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.52-60
    • /
    • 2000
  • In order to design a reliable machine component efficiently, it is necessary to set up the process of durability analysis using computer simulation technique. In this paper, two methods for dynamic stress calculation, which are basis of durability analysis, are reviewed. Then, a user-oriented dynamic stress analysis program is developed from these two algorithms together with a general-purpose flexible body dynamic analysis and structural analysis programs. Finally, a slider-crank mechanism which has a flexible connecting-rod is chosen to show the special characteristics of these two dynamic stress calculation methods.

  • PDF

진동의 영역 제어 (Regional Control of Vibration)

  • 김양한;장지호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.472-475
    • /
    • 2008
  • Generally, a linear vibration theory regards a vibratory system as the superposition of many degrees of vibratory system. Modal analysis stems, in fact, considers the vibration system as what has input, output, and transfer function that relates the input and output. When we want to control, however, the vibratory system, we define, first, the object function that can be vibration energy of certain vibratory system. Then, we try to find the transfer function that can minimize the object function. We can readily extend this approach to control the distributed vibration system. For example, the vibrations of a vehicle, including ships and trains. In this case, we may want to minimize the vibration of the area we select. For example, minimize the vibration of the passengers' seat, but allowing the vibration of other area; for example engines and wheels. This paper introduces a general theory that can control the vibration of the selected area, which can be called as "regional control of vibration." In fact, this is the extended theory of well known sound control of "bright zone"(Choi and Kim, 2002).]. Several illustrative examples demonstrate the applicability and properties that are not available if we use modal analysis method.

  • PDF