• Title/Summary/Keyword: Modal Strain Energy

Search Result 103, Processing Time 0.03 seconds

An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA

  • Khatir, S.;Khatir, T.;Boutchicha, D.;Le Thanh, C.;Tran-Ngoc, H.;Bui, T.Q.;Capozucca, R.;Abdel-Wahab, M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • The existence of damages in structures causes changes in the physical properties by reducing the modal parameters. In this paper, we develop a two-stages approach based on normalized Modal Strain Energy Damage Indicator (nMSEDI) for quick applications to predict the location of damage. A two-dimensional IsoGeometric Analysis (2D-IGA), Machine Learning Algorithm (MLA) and optimization techniques are combined to create a new tool. In the first stage, we introduce a modified damage identification technique based on frequencies using nMSEDI to locate the potential of damaged elements. In the second stage, after eliminating the healthy elements, the damage index values from nMSEDI are considered as input in the damage quantification algorithm. The hybrid of Teaching-Learning-Based Optimization (TLBO) with Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) are used along with nMSEDI. The objective of TLBO is to estimate the parameters of PSO-ANN to find a good training based on actual damage and estimated damage. The IGA model is updated using experimental results based on stiffness and mass matrix using the difference between calculated and measured frequencies as objective function. The feasibility and efficiency of nMSEDI-PSO-ANN after finding the best parameters by TLBO are demonstrated through the comparison with nMSEDI-IGA for different scenarios. The result of the analyses indicates that the proposed approach can be used to determine correctly the severity of damage in beam structures.

International Research Status on Spent Nuclear Fuel Structural Integrity Tests Considering Vibration and Shock Loads Under Normal Conditions of Transport (정상운반조건의 진동 및 충격하중을 고려한 사용후핵연료의 구조적 건전성 시험평가 해외연구현황)

  • Lim, JaeHoon;Cho, Sang Soon;Choi, Woo-seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.167-181
    • /
    • 2019
  • Currently, the development of evaluation technology for vibration and shock load characteristics and spent nuclear fuel structural integrity under normal conditions of transport is being conducted in the Republic of Korea. This is the first such research conducted in the Republic of Korea and, thus, previous international studies need to be investigated and will be referred to in the ongoing project. Before 2000, several studies related to measurement of vibration and shock loads on spent nuclear fuel were conducted in the US. US national research institutes conducted uniaxial fuel assembly shaker tests, concrete block tests, and multi-axis fuel assembly tests between 2009 and 2016. In 2017, multi-modal transportation tests including road, sea, and rail transport were also performed by research institutes from the US, Spain and the Republic of Korea. Therefore, test preparation procedures, acceleration and strain measurement results, and finite-element and multi-body dynamics analysis were investigated. Based on the measured strain data, the preliminary conclusion was obtained that the measured strain was too small to cause damage to spent nuclear fuel rods. However, this conclusion is a preliminary conclusion that only reviews part of the results; a detailed review is being conducted in the US. The investigation of international studies on spent nuclear fuel structural integrity tests considering vibration and shock loads under normal conditions of transport in the US will be useful data for the project being conducted in the Republic of Korea.

Hybrid Damage Monitoring Technique for Plate Girder Bridges using Acceleration-Impedance Signatures (판형교의 가속도-임피던스 신호를 이용한 하이브리드 손상 모니터링 기법)

  • Hong, Dong-Soo;Cho, Hyun-Man;Na, Won-Bae;Kim, Jeong-Tae;Park, Gyu-Hae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.197-202
    • /
    • 2008
  • In this paper, a hybrid vibration-impedance approaches is newly proposed to detect the occurrence of damage, the location of damage, and extent of damage in steel plate-girder bridges. The hybrid scheme mainly consists of three sequential phases: 1) to alarm the occurrence of damage, 2) to classify the alarmed damage, and 3) to estimate the classified damage in detail. Damage types of interest include flexural stiffness-loss in girder and bolts-loose in supports. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the alarmed damage is classified into subsystems by recognizing patterns of impedance features. In the final phase, the location and the extent of damage are estimated by using modal strain energy-based damage index method and root mean square deviation method. The feasibility of the proposed system is evaluated on a laboratory-scaled steel plate-girder bridge model for which hybrid vibration-impedance signatures were measured for several damage scenarios.

  • PDF

Cost-Effectiveness Evaluation of the Structure with Viscoelastic Dampers (점탄성감쇠기를 설치한 구조물의 비용효율성 평가)

  • 고현무;함대기;조상열
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.387-393
    • /
    • 2001
  • Installing vibration control devices in the structure rises as a solution instead of increasing structural strength considering construction cost. Especially, viscoelastic dampers show excellent vibration control performance at low cost and are easy to install in existing structures compared with other control devices. Therefore, cost-effectiveness of structure with viscoelastic dampers needs to be evaluated. Previous cost-effectiveness evaluation method for the seismically isolated structure(Koh et al., 1999;2000)is applied on the building structure with viscoelastic dampers, which combines optimal design and cost-effectiveness evaluation for seismically isolated structures based on minimum life-cycle cost concept. Input ground motion is modeled in the form of spectral density function to take into account acceleration and site coefficients. Damping of the viscoelastic damper is considered by modal strain energy method. Stiffness of shear building and shear area of viscoelastic damper are adopted as design variables for optimization. For the estimation of failure probability, transfer function of the structure with viscoelastic damper for spectral analysis is derived from the equation of motion. Results reveal that cost-effectiveness of the structure with viscoelastic dampers is relatively high in how seismic region and stiff soil condition.

  • PDF

A STUDY ON THE HYDROELASTIC RESPONSE OF A PLATE UNDER IMPULSIVE PRESSURES DUE TO BREAKING WAVES

  • Park, Hang-Shoon;Lee, Dong-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • In this paper, breaking waves are generated in a 2-D wave tank and simulated by using a higher-order boundary element method. A piston-type wavemaker is operated by signals composed of elementary waves. The phase of elementary waves is determined by the linear theory such that they are focused to a prescribed position. Calculated plunging waves coincide well with experiment. A steel box with different plate thicknesses is installed at a predetermined position in the tank. Measured impulsive pressures due to breaking waves are found to be 0.8-1.2$\rho$C2, where $\rho$ corresponds to water density and C to wave celerity. The transverse displacement of the plate is described in terms of modal eigenfunctions. The natural frequencies measured by impact tests in air for thin plate coincide with the computational and theoretical values. The radiationpotential due to plate vibration is derived and the radiation force is expressed in terms of hydroelastic added mass and damping forces. Comparison of natural frequencies of plate in water proves that hydroelastic added mass and damping are properly considered. The measured strain due to regular waves supports the calculated one, but there are apparent discrepancies between theory and experiment in the impulsive case.

Topology Optimization of Plane Structures with Multi-Frequency Cases (다진동수를 고려한 평면구조물의 위상최적화)

  • Lee, Sang-Jin;Bae, Jung-Eun;Park, Gyeong-Im
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.233-238
    • /
    • 2006
  • This paper provides a new topology optimization technique which is intended to maximize the fundamental frequency with simultaneous consideration of other natural frequencies in the form of multi-frequency problems. The modal strain energy is considered as the objective function to be minimized and the initial volume of structures is used as the constraint function. The resizing algorithm based on the optimality criteria is adopted to update the hole size existing inside the material. From numerical tests, the proposed technique is found to be very effective to maximize the fundamental frequency of the structure and it can also successfully consider several higher mode effects into the optimum topology of structure through the introduction of weights.

  • PDF

Hybrid damage monitoring of steel plate-girder bridge under train-induced excitation by parallel acceleration-impedance approach

  • Hong, D.S.;Jung, H.J.;Kim, J.T.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.719-743
    • /
    • 2011
  • A hybrid damage monitoring scheme using parallel acceleration-impedance approaches is proposed to detect girder damage and support damage in steel plate-girder bridges which are under ambient train-induced excitations. The hybrid scheme consists of three phases: global and local damage monitoring in parallel manner, damage occurrence alarming and local damage identification, and detailed damage estimation. In the first phase, damage occurrence in a structure is globally monitored by changes in vibration features and, at the same moment, damage occurrence in local critical members is monitored by changes in impedance features. In the second phase, the occurrence of damage is alarmed and the type of damage is locally identified by recognizing patterns of vibration and impedance features. In the final phase, the location and severity of the locally identified damage are estimated by using modal strain energy-based damage index methods. The feasibility of the proposed scheme is evaluated on a steel plate-girder bridge model which was experimentally tested under model train-induced excitations. Acceleration responses and electro-mechanical impedance signatures were measured for several damage scenarios of girder damage and support damage.

Finite Element Analyses on the Dynamic Behavior of Piezoelectric ZnO Nanowires and Their Piezoelectric Device Application Potentials (압전 산화아연 나노와이어의 동적거동 및 압전소자 응용성)

  • Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.

Parametric Study on Earthquake Responses of Soil-structure Interaction System by Substructure Method (부분구조법에 의한 지반-구조물상호작용시스템의 지진응답 매개변수 연구)

  • 박형기;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • In the dynamic soil-structure interaction(SSI) analysis, numerous uncertain parameters are involved. They include the uncertainties in the definition of input motions, modeling of soil-structure interaction systems. analysis techniques, etc. This paper presents the results of parametric studies of the seismic responses of a reactor containment structure built on the viscoelastic layered soil. Among the numerous parameter, this study concentrates on the effects of definition point of the input motion, embedment of structure to the base soil, thickness of the top soil layer, and rigidity of the base soil. The substructure method using frequency independent impedances is adopted. The method is based on the mode superposition method in time domain using the composite modal damping values of th SSI system computed from the ratio of dissipated energy to the strain energy for each model. From the study results, the sensitivity of each parameter on the earthquake responses has been suggested for the practical application of the substructure method of SSI analysis.

  • PDF

Application of Hamilton variational principle for vibration of fluid filled structure

  • Khaled Mohamed Khedher;Muzamal Hussain;Rizwan Munir;Saleh Alsulamy;Ayed Eid Alluqmani
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.401-410
    • /
    • 2023
  • Vibration investigation of fluid-filled three layered cylindrical shells is studied here. A cylindrical shell is immersed in a fluid which is a non-viscous one. Shell motion equations are framed first order shell theory due to Love. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the wave propagation approach procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. It is also exhibited that the effect of frequencies is investigated by varying the different layers with constituent material. The coupled frequencies changes with these layers according to the material formation of fluid-filled FG-CSs. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped (C-C), simply supported-simply supported (SS-SS) frequency curves are higher than that of clamped-simply (C-S) curves. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Computer software MATLAB codes are used to solve the frequency equation for extracting vibrations of fluid-filled.