• 제목/요약/키워드: Modal Parameter

검색결과 323건 처리시간 0.035초

부분 구조물의 모드 합성을 이용한 구조물 모드 매개변수의 민감도 해석 (Modal Parameter Sensitivity Analysis Using Component Mode Synthesis Method)

  • 김형중;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.184-191
    • /
    • 1997
  • A method, termed as the substructural sensitivity synthesis method, which utilizes the computational merits of the component mode synthesis technique is proposed to calculate design sensitivity of modal parameters of substructurally combined structures. In this method, the sensitivity analysis is combined with component mode synthesis thchnique. thus the degrees of freedom of a combined structure can be dramatically reduced. Free-interface mode method including the residual attachment modes among the component mode synthesis methods is used to calculate the modal sensitivity of the combined structure. For the design sensitivities of modal properties of structure, the Nelson's method, which is exact solving method is used. It is shown that the modal sensitivities of the entire structure can be obtained by synthesizing the substructural modal data, and the sensitivities of the modal data about the design variables of modifiable substructure. Using the proposed method, the final degrees of freedom of entire structure can be remarkably reduced to calculate the modal parameter sensitivities. With a structure composed of beams and plates, as an example, the sensitivities of the eigenvalues and eigenvectors obtained by this proposed method were compared with the exact solutions in terms of accuracy.

  • PDF

Wheel의 원반 진동을 고려한 외경연삭 주축의 동특성 (Dynamic Chanrateristics of Spindle for the External Cylindrical Grinding Machine Considered the Shell Mode Vibration of Wheel)

  • 하재훈;이선규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1000-1004
    • /
    • 1995
  • In the case of the external cylindrical grinding machine, the grinding mechanism can cause a wheel to vibrate due to a wheel cutter. This phenomena will bring about the unsymmetric wear up to high frequency without any relation of rotational speed. So far, when the grinding spindle is analyzed, it is assumed that a wheel is considered as lumped mass at the endof a beam. Nowadays, there is a tendency to use the wheel with a lsrge diameter or CBN wheel to achieve the high speed and accuracy grinding performance. Therefore, this kind of assumption is no longer valid. At the analysis of the grinding spindle, the parameter which dapends on the dynamic characteristics is a combination force between each part. For example, there is the tightness torque of a bolt and taper element in the grindle. In addition, the material property of the wheel can contribute the dynamic characteristics. This paper shows the mode participation of the shell mode of the wheel in the grindle and the dynamic characteristics according to the parameters which are the configuration of the flange and tightness torque of a bolt and taper. Modal parameter of the wheel, flange and the spindle can be extracted through frequency response function obtained by modal test. After that, by changing the tightness torque and kinds of wheel, we could accomplish the test in the whole combined grinding spindle. To perform modal analysis of vibration characteristics in the grinding spindle, we could develop the model of finite element method.

  • PDF

Output-only modal parameter identification for force-embedded acceleration data in the presence of harmonic and white noise excitations

  • Ku, C.J.;Tamura, Y.;Yoshida, A.;Miyake, K.;Chou, L.S.
    • Wind and Structures
    • /
    • 제16권2호
    • /
    • pp.157-178
    • /
    • 2013
  • Output-only modal parameter identification is based on the assumption that external forces on a linear structure are white noise. However, harmonic excitations are also often present in real structural vibrations. In particular, it has been realized that the use of forced acceleration responses without knowledge of external forces can pose a problem in the modal parameter identification, because an external force is imparted to its impulse acceleration response function. This paper provides a three-stage identification procedure as a solution to the problem of harmonic and white noise excitations in the acceleration responses of a linear dynamic system. This procedure combines the uses of the mode indicator function, the complex mode indication function, the enhanced frequency response function, an iterative rational fraction polynomial method and mode shape inspection for the correlation-related functions of the force-embedded acceleration responses. The procedure is verified via numerical simulation of a five-floor shear building and a two-dimensional frame and also applied to ambient vibration data of a large-span roof structure. Results show that the modal parameters of these dynamic systems can be satisfactorily identified under the requirement of wide separation between vibration modes and harmonic excitations.

시간영역에서의 다중 입력-출력시스템의 모드매개변수 추정방법 (A Time Domain Modal Parameter Estimation Method for Multiple Input-Output Systems)

  • 이건명
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.1997-2004
    • /
    • 1994
  • A model analysis method has been developed in the paper. The method estimates the modal parameters of multiple input-output systems, assesses their quality, and seperates structural modes form computation ones. The modal parameter extraction algorithm is the least squares method with a finite difference model relating input and output time data. The quality of the estimated system model can be assessed in narrow frequency bands by comparing the measured and model predicted responses in time domain with the aid of digital filters. Structural modes can be effectively separated from computational ones using the convergence factor which represents the pole convergence rate. The modal analysis method has been applied to simulated and experimental vibration data to evaluate its utility and limitations.

스마트 센서 시스템을 이용한 구조물의 모달 인자 추출 (Identify Modal Parameter by The Output Response of Structure Using Smart Sensor System)

  • 이우상;허광희;박기태;전준룡
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권4호
    • /
    • pp.149-160
    • /
    • 2008
  • 본 논문에서는 구조물의 응답 신호만을 스마트 센서 시스템으로 획득하여 모달 인자들을 추출하는 연구를 수행하였다. 본 연구의 목적은 최근에 차세대 계측시스템으로 활발히 연구 되고 있는 스마트 센서 시스템의 성능과 현장 적용 가능성을 검증하는데 있다. 본 연구에 사용된 스마트 센서 시스템은 MEMS형 가속도 센서와 8bit CPU, 무선모뎀을 이용하여 실시간 동적계측이 가능하도록 개발되었다. 모달 인자 추출 실험은 모형 캔틸레버 보에 임의 가진을 가한 후, 구조물의 응답을 스마트 센서와 범용계측장비로 각각 획득하였다. 데이터 분석은 NExT & ERA 알고리즘을 이용하여 모달 인자를 추출하였다. 또한, 양질의 데이터를 획득하기 위하여 EOT알고리즘으로 최적의 계측위치를 선정하였다. 실험 결과, 스마트 센서의 현장 적용 가능성을 확인할 수 있었다.

Output-only modal parameter identification of civil engineering structures

  • Ren, Wei-Xin;Zong, Zhou-Hong
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.429-444
    • /
    • 2004
  • The ambient vibration measurement is a kind of output data-only dynamic testing where the traffics and winds are used as agents responsible for natural or environmental excitation. Therefore an experimental modal analysis procedure for ambient vibration testing will need to base itself on output-only data. The modal analysis involving output-only measurements presents a challenge that requires the use of special modal identification technique, which can deal with very small magnitude of ambient vibration contaminated by noise. Two complementary modal analysis methods are implemented. They are rather simple peak picking (PP) method in frequency domain and more advanced stochastic subspace identification (SSI) method in time domain. This paper presents the application of ambient vibration testing and experimental modal analysis on large civil engineering structures. A 15 storey reinforced concrete shear core building and a concrete filled steel tubular arch bridge have been chosen as two case studies. The results have shown that both techniques can identify the frequencies effectively. The stochastic subspace identification technique can detect frequencies that may possibly be missed by the peak picking method and gives a more reasonable mode shapes in most cases.

Modal Testing of Mechanical Structures Subject to Operational Excitation Forces

  • Gade, Svend;Moller, Nis B.;Herlufsen, Henrik;Brincker, Rune;Andersen, Palle
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1162-1165
    • /
    • 2001
  • Operational Modal Analysis also known as Output Only Modal Analysis has in the recent years been used for extracting modal parameters of civil engineering structures and is now becoming popular for mechanical structures. The advantage of the method is that no artificial excitation need to be applied to the structure or force signals to be measured. All the parameter estimation is based upon the response signals, thereby minimising the work of preparation for the test. This test case is a controlled lab set-up enabling different parameter estimation methods techniques to be used and compared to the Operational Modal Analysis. For Operational Modal Analysis two different estimation techniques are used: a non-parametric technique based on Frequency Domain Decomposition (FDD), and a parametric technique working on the raw data in time domain, a data driven Stochastic Subspace Identification (SS!) algorithm. These are compared to other methods such as traditional Modal Analysis.

  • PDF

모달 파라미터를 이용한 보 구조물의 모델링 (Modeling of Beam Structures from Modal Parameters)

  • 황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF

전자기력 측정과 방향성주파수 응답함수를 이용한 능동 자기베어링 시스템의 운전중 모드시험 및 매개변수 규명 (In-situ modal testing and parameter identification of active magnetic bearing system by magnetic force measurement and the use of directional frequency response functions)

  • 하영호;이종원
    • 대한기계학회논문집A
    • /
    • 제21권7호
    • /
    • pp.1156-1165
    • /
    • 1997
  • Complex modal testing is employed for the in-situ parameter identification of a four-axis active magnetic bearing system while the system is in operation. In the test, magnetic bearings are used as exciters as well as actuators for feedback control. The experimental results show that the directional frequency response function, which is properly defined in the complex domain, is a powerful tool for identification of bearing as well as modal parameters. It is also shown that the position and current stiffnesses can be accurately estimated using the relations between the measured forces, displacements, and currents.