• Title/Summary/Keyword: Modal Expansion Method

Search Result 71, Processing Time 0.028 seconds

Assessment of modal parameters considering measurement and modeling errors

  • Huang, Qindan;Gardoni, Paolo;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.717-733
    • /
    • 2015
  • Modal parameters of a structure are commonly used quantities for system identification and damage detection. With a limited number of studies on the statistics assessment of modal parameters, this paper presents procedures to properly account for the uncertainties present in the process of extracting modal parameters. Particularly, this paper focuses on how to deal with the measurement error in an ambient vibration test and the modeling error resulting from a modal parameter extraction process. A bootstrap approach is adopted, when an ensemble of a limited number of noised time-history response recordings is available. To estimate the modeling error associated with the extraction process, a model prediction expansion approach is adopted where the modeling error is considered as an "adjustment" to the prediction obtained from the extraction process. The proposed procedures can be further incorporated into the probabilistic analysis of applications where the modal parameters are used. This study considers the effects of the measurement and modeling errors and can provide guidance in allocating resources to improve the estimation accuracy of the modal data. As an illustration, the proposed procedures are applied to extract the modal data of a damaged beam, and the extracted modal data are used to detect potential damage locations using a damage detection method. It is shown that the variability in the modal parameters can be considered to be quite low due to the measurement and modeling errors; however, this low variability has a significant impact on the damage detection results for the studied beam.

Development of a Global Searching Shortest Path Algorithm by Genetic Algorithm (유전 알고리듬을 이용한 전역탐색 최단경로 알고리듬개발)

  • 김현명;임용택
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.163-178
    • /
    • 1999
  • Conventional shortest path searching a1gorithms are based on the partial searching method such as Dijsktra, Moore etc. The a1gorithms are effective to find a shortest path in mini-modal condition of a network. On the other hand, in multi-modal case they do not find a shortest path or calculate a shortest cost without network expansion. To copy with the problem, called Searching Area Problem (SAP), a global searching method is developed in this paper with Genetic Algorithm. From the results of two examples, we found that the a1gorithm is useful to solving SAP without network expansion.

  • PDF

Analysis Methods of Hydroelastic Responses for a Very Large Floating Structure (초대형 부유식 해양구조물의 유탄성 응답에 대한 해석 방법)

  • 이호영
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.19-27
    • /
    • 2000
  • In this paper hydroelastic responses of a very large floating structure(VLFS) are studied theoretically. We have been developed the source and dipole distribution method and pressure distribution method to evaluate the hydrodynamic pressures. The problem of vertical structural responses due to waves are calculated by using finite element method(FEM) and modal expansion method of a free-free beam Hydroelastic responses of VLFS in waves are computed by four methods developed in this paper. As a result the theoretical results of motion responses show good agreements with experimental ones.

  • PDF

A Study on the Rectangular Waveguide Phase-Shifter Partially Loaded with a Rectangular Dielectric Slab (구형 유전체판이 삽입된 구형도파관 이상기에 관한 연구)

  • 박병우;이상설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.10
    • /
    • pp.850-856
    • /
    • 1990
  • Generally, the waveguide phase-shifter has been analyzed by the modal expansion method. We can not apply this method in the case which is difficult to choose a nenerating function. In this paper, we are analyzed the rectangular waveguide phase shifter using the perturbation method. When the depth of dielectric slab is smaller then one half of the waveguide height, the experimental results are well agreed with the calculated values by this method.

  • PDF

Analysis of Transmission-line Discontinuities by 3-dimensional Finite Element Method (3차원 유한요소법에 의한 도파로의 불연속 특성 해석)

  • 이상수;안창회;정봉식;이수영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.5
    • /
    • pp.355-360
    • /
    • 1991
  • A transmission-line discontinuities are analyzed by Finite Element Method. We use quasi-static approxmation to determine the circuit parameters of discontinuities. Delta formulation is introduced so that the cancellation error of potential calculation is reduced. To verify this method, capacitance of coaxial cable with discontinuous and coupling capacitances are calculated by modal expansion. This approach can be used for arbitrary discontinuous conducting patterns of microwave devices.

  • PDF

FREE VIBRATION ANALYSIS OF CIRCULAR PLATE WITH ECCENTRIC HOLE SUBMERGED IN FLUID

  • Jhung, Myung-Jo;Choi, Young-Hwan;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.355-364
    • /
    • 2009
  • Circular plates with holes are extensively used in mechanical components. The existence of a hole in a circular plate results in a significant change in the natural frequencies and mode shapes of the structure. Especially if the hole is located eccentrically, the vibration behavior of these structures is expected to deviate significantly from that of a plate with a concentric hole. In addition, if the plate is in contact with or submerged in fluid, the situation is more complex. Therefore, in this study, an analytical method to determine the modal characteristics of a plate submerged in fluid is developed based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method and is verified by the finite element analysis using a commercial program. Also, the relationship between parameter variations and vibration modes is investigated. These results can be used as guidance for the modal analysis and damage detection of a circular plate with a hole.

Fourier Series Expansion Method for Free Vibration Analysis of a Fully Liquid-Filled Circular Cylindrical Shell (Fourier 급수전개를 이용한 유체로 가득 채워진 원통형 셸의 고유진동 해석)

  • 정경훈;이성철
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.137-146
    • /
    • 1994
  • An analytical method for linear free vibration of fully liquid-filled circular cylindrical shell with various boundary conditions is developed by the Fourier series expansion based on the Stokes' transformation. A set of modal displacement functions and their derivatives of a circular cylindrical shell is substituted into the Sanders' shell equations in order to explicitily represent the Fourier coefficients as functions of the end point displacements, forces, and moments. For the vibration relevant to the liquid motion, the velocity potential of liquid is assumed as a sum of linear combination of suitable harmonic functions in the axial directions. The unknown parameter of the velocity potential is selected to satisfy the boundary condition along the wetted shell surface. An explicit expression of the natural frequency equation can be obtained for any kind of classical boundary conditions. The natural frequencies of the liquid-filled cylindrical shells with the clamped-free, the clamped-clamped, and the simply supported-simply supported boundary conditions examined in the previous works, are obtained by the analytical method. The results are compared with the previous works, and excellent agreement is found for the natural frequencies of the shells.

  • PDF

Comparison of various methods to obtain structural vibration for vibro-acoustic noise (구조 방사 소음의 해석을 위한 구조물의 진동 획득 방법의 비교)

  • Wang Se-Myung;Shin Min-Cheol;Koo Kun-Mo;Kim Dae-Sung;Bae Won-Ki;Kyong Yong-Soo;Kim Jung-Seon;Kook Jung-Hwan;Thuy Tran ho Vihn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.607-611
    • /
    • 2006
  • There are several methods to obtain structural vibration for analysis of vibro-acoustic noise. First of all, vibration data can be obtained through the structural analysis using finite element method. Although this method has no need to experiment, the analysis result is unreliable when the structure and the vibration source is complex to model exactly. The second method is to measure vibration using a number of sensors. The analyzed vibro-acoustic noise with directly measured data is setting morereliable when the number of data acquisition points is getting larger. However, it requires large amount of time and effort to measure all vibration data on every node especially when the size of vibrating structure is large. The Modal Expansion Method(MEM), which uses mode information and measurement data, has been introduced to compensate their limits. With a relatively small number of measurement data, the reliable structural vibration for vibro-acoustic noise can be obtained using this semi-analysis method. Although MEM gives reliable result, it is restricted by the number of modes and measurement points. In this paper, structural analysis, direct vibration measurement method and MEM are compared using the simple aluminum box model. Furthermore, the washing machine case is also provided as a comparative example. The Laser Doppler Vibrometer(LDV) was used instead of contact type accelerometer to get vibration data.

  • PDF

A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeams

  • Zamanian, M.;Rezaei, H.;Hadilu, M.;Hosseini, S.A.A.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.891-918
    • /
    • 2015
  • In many of microdevices a part of a microbeam is covered by a piezoelectric layer. Depend on the application a DC or AC voltage is applied between upper and lower side of the piezoelectric layer. A common method in many of previous works for evaluating the response of these structures is discretizing by Galerkin method. In these works often single mode shape of a uniform microbeam i.e. the microbeam without piezoelectric layer has been used as comparison function, and so the convergence of the solution has not been verified. In this paper the Galerkin method is used for discretization, and a comprehensive analysis on the convergence of solution of equation that is discretized using this comparison function is studied for both clamped-clamped and clamped-free microbeams. The static and dynamic solution resulted from Galerkin method is compared to the modal expansion solution. In addition the static solution is compared to an exact solution. It is denoted that the required numbers of uniform microbeam mode shapes for convergence of static solution due to DC voltage depends on the position and thickness of deposited piezoelectric layer. It is shown that when the clamped-clamped microbeam is coated symmetrically by piezoelectric layer, then the convergence for static solution may be obtained using only first mode. This result is valid for clamped-free case when it is covered by piezoelectric layer from left clamped side to the right. It is shown that when voltage is AC then the number of required uniform microbeam shape mode for convergence is much more than the number of required mode in modal expansion due to the dynamic effect of piezoelectric layer. This difference increases by increasing the piezoelectric thickness, the closeness of the excitation frequency to natural frequency and decreasing the damping coefficient. This condition is often indefeasible in microresonator system. It is concluded that discreitizing the equation of motion using one mode shape of uniform microbeam as comparison function in many of previous works causes considerable errors.

Beat Map Drawing Method of Bell Type Structures and Beat Maps of the King Seong-deok Divine Bell (종형 구조물의 맥놀이 지도 작성법과 성덕대왕신종의 맥놀이 지도)

  • 김석현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.626-636
    • /
    • 2003
  • The beat distribution property of the King Seong-deok Divine Bell is investigated by experiment and analysis. The beat map method is proposed to explain the beat distribution property on the circumference of the bell. For the analytical investigation, an analytical model of the vibration beat is derived on a slightly asymmetric shell of revolution by using the modal expansion method. In the analytical method, the beat map can be drawn only if the modal parameters of the bell are obtained. The analytical beat model is applied to draw the beat map of the King Seong-deok Divine Bell. The validity of the analytical method is verified by comparing the analytical beat maps with the experimental results. This paper proposes a visualization method of the beat and theoretically identifies the reason why the clear and unclear beats repeat periodically along the circumference of the bell and how the striking position influences the beat distribution property.