• Title/Summary/Keyword: Mobility management protocol

Search Result 183, Processing Time 0.02 seconds

Tree based Route Optimization in Nested NEMO Environment (중첩 NEMO 환경에서 트리 기반 라우트 최적화 기법)

  • Lim, Hyung-Jin;Chung, Tai-Myoung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.1
    • /
    • pp.9-19
    • /
    • 2008
  • This paper propose the issue of connecting nested NEMO (Network Nobility) networks to global IPv6 networks, while supporting IPv6 mobility. Specifically, we consider a self-addressing including topology information IPv6-enabled NEMO infrastructure. The proposed self-organization addressing protocol automatically organized mobile routers into free architecture and configuration their global IPv6 addresses. BU(binding update) to MR own HA and internal rouging, hosed on longest prefix matching and soft state routing cache, are specially designed for IPv6-based NEMO. In conclusion, numeric analysis ore conducted to show more efficiency of the proposed routing protocols than other RO (Route Optimization) approaches.

  • PDF

Routing Mechanism using Mobility Prediction of Node for QoS in Mobile Ad-hoc Network (모바일 애드-혹 네트워크에서 QoS를 위한 노드의 이동성 예측 라우팅 기법)

  • Cha, Hyun-Jong;Han, In-Sung;Yang, Ho-Kyung;Cho, Yong-Gun;Ryou, Hwang-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.659-667
    • /
    • 2009
  • Mobile Ad-hoc Network consists of mobile nodes without immobile base station. In mobile ad-hoc network, network cutting has occurred frequently in node because of energy restriction and frequent transfer of node. Therefore, it requires research for certain techniques that react softly in topology alteration in order to improve reliability of transmission path. This paper proposes path selection techniques to consider mobility of node that respond when search path using AOMDV routing protocol. As applying proposed techniques, We can improve reliability and reduce re-searching number of times caused by path cutting.

A Performance Enhancement Scheme of Hierarchical Mobility Management in IPv6 Networks (IPv6 네트워크에서 계층적 이동성 관리의 성능향상 방안)

  • Seo, Jae-Kwon;Lee, Kyug-Geun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.119-126
    • /
    • 2007
  • Recently, the mobility of users and mobile communication technologies have developed rapidly. The users in this state also want to connect their devices and to receive services anywhere, anytime. Hierarchical Mobile IPv6 (HMIPv6) has been proposed by the Internet Engineering Task Force (IETF) to compensate for such problems as handover latency and signaling overhead when employing Mobile IPv6 (MIPv6). HMIPv6 supports micro-mobility within a domain and introduces a new entity, namely Mobility Anchor Point (MAP) as a local home agent. However, HMIPv6 has been found to cause longer handover latency when the inter-domain handover occurs. This is because a Mobile Node (MN) has to generate two addresses and register them to Home Agent (HA) a MAP, respectively. In order to solve such problems, we propose a scheme that an MN generates one address and registers it to HA for supporting fast handover during the inter-domain handover process. In the proposed scheme, the load of MAP and MAP domain is reduced because the number of MNs which are managed by MAP is decreased and the MAP does not perform proxy Neighbor Discovery Protocol (NDP) to intercept packets destined to MNs. We evaluate the performance of proposed scheme in comparison to HMIPv6 through the simulation and numerical analysis.

Performance Analysis of Cost-Effective Handoff Scheme in PMIPv6 Networks with DNS Supporting (PMIPv6 네트워크에서 DNS기반의 비용효과적인 핸드오프 기법의 성능분석)

  • Kim, Jae-Hoon;Jeong, Jong-Pil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.131-140
    • /
    • 2011
  • Proxy Mobile IPv6 (PMIPv6) is designed to provide a network-based localized mobility management protocol, but it does not handle the global mobility of hosts. In this paper, we propose a location management scheme based on Domain Name System (DNS) for PMIPv6. In this proposed scheme, DNS as a location manager provides PMIPv6 for global mobility. In addition, a paging extension scheme is introduced to PMIPv6 in order to support large numbers of mobile terminals and enhance network scalability. To evaluate the proposed location management scheme, we establish an analytical model, formulate the location update and the paging cost, and analyse the influence of the different factors on the total signalling cost. The performance results show how the total signal cost changes under various parameters.

Load Balancing and Mobility Management in Multi-homed Wireless Mesh Networks

  • Tran, Minh Tri;Kim, Young-Han;Lee, Jae-Hwoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.959-975
    • /
    • 2011
  • Wireless mesh networks enlarge the wireless coverage area by interconnecting relatively stationary wireless routers (mesh routers). As wireless mesh networks are envisioned to provide high-bandwidth broadband Internet service to a large community of users, the Internet gateway, which acts as a central point of Internet attachment for the mesh networks, is likely to suffer heavily from the scramble for shared wireless resources because of aggregated traffic toward the Internet. It causes performance decrement on end-to-end transmissions. We propose a scheme to balance the load in a mesh network based on link quality variation to different Internet gateways. Moreover, under the mesh coverage, mobile nodes can move around and connect to nearby mesh routers while still keeping the connections to the Internet through the best gateway in terms of link quality. In this structure, gateways perform the balancing procedure through wired links. Information about gateways and mobile node's location is distributed appropriately so that every mesh router can quickly recognize the best gateway as well as the positions of mobile nodes. This distributed information assists mobile nodes to perform fast handoff. Significant benefits are shown by the performance analysis.

A Multi-Service MAC Protocol in a Multi-Channel CSMA/CA for IEEE 802.11 Networks

  • Ben-Othman, Jalel;Castel, Hind;Mokdad, Lynda
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.287-296
    • /
    • 2008
  • The IEEE 802.11 wireless standard uses the carrier sense multiple access with collision avoidance (CSMA/CA) as its MAC protocol (during the distributed coordination function period). This protocol is an adaptation of the CSMA/CD of the wired networks. CSMA/CA mechanism cannot guarantee quality of service (QoS) required by the application because orits random access method. In this study, we propose a new MAC protocol that considers different types of traffic (e.g., voice and data) and for each traffic type different priority levels are assigned. To improve the QoS of IEEE 802.11 MAC protocols over a multi-channel CSMA/CA, we have developed a new admission policy for both voice and data traffics. This protocol can be performed in direct sequence spread spectrum (DSSS) or frequency hopping spread spectrum (FHSS). For voice traffic we reserve a channel, while for data traffic the access is random using a CSMA/CA mechanism, and in this case a selective reject and push-out mechanism is added to meet the quality of service required by data traffic. To study the performance of the proposed protocol and to show the benefits of our design, a mathematical model is built based on Markov chains. The system could be represented by a Markov chain which is difficult to solve as the state-space is too large. This is due to the resource management and user mobility. Thus, we propose to build an aggregated Markov chain with a smaller state-space that allows performance measures to be computed easily. We have used stochastic comparisons of Markov chains to prove that the proposed access protocol (with selective reject and push-out mechanisms) gives less loss rates of high priority connections (data and voices) than the traditional one (without admission policy and selective reject and push-out mechanisms). We give numerical results to confirm mathematical proofs.

Implementation and Conformance Test of DYMO Protocol for Ad-Hoc Networks (애드혹 네트워크를 위한 DYMO 프로토콜 구현 및 적합성 검증)

  • Park, Il-Kyun;Kwak, Jung-Nam;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.71-78
    • /
    • 2006
  • MANET routing protocols must support not only wireless networking without any relaying on network infrastructure, but also dynamic management of routing information caused by node mobility. Hence, they are one of important routing protocols for USN. Recently DYMO is regarded as a promising routing protocol for UMT because it is simple and easy to extend as well as it requires less networking load than others. In this paper, we design and implement DYMO routing protocol into various operation systems. Also, we develop a DYMO conformance test tool to evaluate our implementations.

Enhanced Hybrid Routing Protocol for Load Balancing in WSN Using Mobile Sink Node

  • Kaur, Rajwinder;Shergi, Gurleen Kaur
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.268-277
    • /
    • 2016
  • Load balancing is a significant technique to prolong a network's lifetime in sensor network. This paper introduces a hybrid approach named as Load Distributing Hybrid Routing Protocol (LDHRP) composed with a border node routing protocol (BDRP) and greedy forwarding (GF) strategy which will make the routing effective, especially in mobility scenarios. In an existing solution, because of the high network complexity, the data delivery latency increases. To overcome this limitation, a new approach is proposed in which the source node transmits the data to its respective destination via border nodes or greedily until the complete data is transmitted. In this way, the whole load of a network is evenly distributed among the participating nodes. However, border node is mainly responsible in aggregating data from the source and further forwards it to mobile sink; so there will be fewer chances of energy expenditure in the network. In addition to this, number of hop counts while transmitting the data will be reduced as compared to the existing solutions HRLBP and ZRP. From the simulation results, we conclude that proposed approach outperforms well than existing solutions in terms including end-to-end delay, packet loss rate and so on and thus guarantees enhancement in lifetime.

The Mobile Meeting Authentication Scheme Providing Mobility and Privacy (이동성과 프라이버시를 제공하는 모바일 회의 인증 기법)

  • Yun, Sunghyun
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.243-248
    • /
    • 2014
  • The demand for messenger service goes on growing rapidly with widespread use of smartphones. Generally, the smartphone messenger provides group communication functions in which users can make the group and communicate with each other. In the mobile meeting, the attendees can participate in the meeting with use of smartphone messengers wherever they are. To make the mobile meeting put to practical use, the mobility and privacy should be ensured to attendees. To satisfy the mobility requirement, the user which is not belong to the group members should not be able to participate in the meeting. To ensure the privacy requirement, the attendees should have not to repudiate the meeting results. In this study, the mobile meeting authentication scheme is proposed which provides mobility and privacy. The proposed scheme consists of meeting group creation, group key generation, group signature and verification protocols. All attendees should have to participate in the signature verification because it is based on the challenge-response type protocol. Thus, it's not possible to collude with malicious attendees to change the meeting results.

A Study on MAC Protocol Design for Mobile Healthcare (모바일 헬스케어를 위한 MAC 프로토콜 설계에 관한 연구)

  • Jeong, Pil-Seong;Kim, Hyeon-Gyu;Cho, Yang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.323-335
    • /
    • 2015
  • Mobile healthcare is a fusion of information technology and biotechnology and is a new type of health management service to keep people's health at anytime and anywhere without regard to time and space. The WBAN(Wireless Body Area Network) technology that collects bio signals and the data analysis and monitoring technology using mobile devices are essential for serving mobile healthcare. WBAN consisting of users with mobile devices meet another WBAN during movement, WBANs transmit data to the other media. Because of WBAN conflict, several nodes transmit data in same time slot so a collision will occur, resulting in the data transmission being failed and need more energy for re-transmission. In this thesis, we proposed a MAC protocol for WBAN with mobility to solve these problems. First, we proposed a superframe structure for WBAN. The proposed superframe consists of a TDMA(Time Division Muliple Access) based contention access phase with which a node can transmit data in its own time slot and a contention phase using CSMA/CA algorithm. Second, we proposed a network merging algorithm for conflicting WBAN based on the proposed MAC protocol. When a WBAN with mobility conflicts with other WBAN, data frame collision is reduced through network reestablishment. Simulations are performed using a Castalia based on the OMNeT++ network simulation framework to estimate the performance of the proposed superframe and algorithms. We estimated the performance of WBAN based on the proposed MAC protocol by comparing the performance of the WBAN based on IEEE 802.15.6. Performance evaluation results show that the packet transmission success rate and energy efficiency are improved by reducing the probability of collision using the proposed MAC protocol.