• Title/Summary/Keyword: Mobility Anchor Point

Search Result 49, Processing Time 0.034 seconds

A Micro Mobility Management Scheme in Wireless LAN Environments (무선 LAN환경에서 마이크로 이동성 지원 방안)

  • 고광신;차우석;김형준;조기환
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.2
    • /
    • pp.158-170
    • /
    • 2004
  • Mobile IP is a base protocol to support host mobility in IP-based wireless network. It is well known that the protocol contains two main delay factors on a handoff process; one is to detect a host movement, and the other is to register the host's current location to its home network. This paper examines Layer 2(L2) handoff procedure in the IEEE 802.11 Wireless LAN, and identifies these L2 triggers that can be usefully applied to Layer 3(L3) handoff. Then, the MCAA(Multiple-Casting using Anchor Agent) mechanism is proposed. It makes use of the L2 trigger and the network topology to construct an anchor agent dynamically, and the multiple-casting scheme to prevent an ongoing packet to be lost. Using a network simulator, the proposed mechanism has been evaluated the handoff delay and the packet lost point of view, in comparison with the regional registration protocol which is the most well known micro mobility support mechanism.

Paging Extensions for Hierarchical Mobile IPv6 (계층적 Mobile IPv6에서의 페이징 지원 방안)

  • 박기현;조유제
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.509-511
    • /
    • 2003
  • 최근 이동 통신 환경에서의 인터넷 서비스의 요구가 늘어남에 따라 IP의 이동성 지원에 대한 연구가 활발히 진행되어 왔다. 본 논문은 IP 이동성 지원을 위한 프로토콜 중 IETF(Internet Engineering Task Forces)에서 현재 표준화가 진행중인 HMIPv6(Hierarchical Mobile IPv6 Mobility Management)[4]가 가지는 부하 분산 문제를 수평적인 MAP(Mobility Anchor Point) 구조를 통해 해결하고, 이 구조에서의 페이징 지원 방안을 제안하였다.

  • PDF

PMIP-based Distributed Mobility Management for Tactical Network (전술 기동망의 이동성 지원을 위한 PMIP기반 분산 이동성 관리 적용방안)

  • Sun, Kyoungjae;Kim, Younghan;Noh, Hongjun;Park, Hyungwon;Han, Myounghun;Kwon, Daehoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.654-666
    • /
    • 2019
  • The tactical network has several different characteristics compared with commercial internet network such as hierarchical topology, dynamic topology changing and wireless link based connectivity. For considering IP mobility management in the tactical network, current mobility management using Mobile IP(MIP) is not suitable with some reasons such as non-optimal routing paths and single point of failure. Proxy Mobile IP(PMIP) which supporting network-based mobility in hierarchical manner can provide optimal routing path in the tactical network environment, but centralized anchor is still remained a threat to the stability of the tactical network which changes its topology dynamically. In this paper, we propose PMIP-based distributed mobility management for the tactical network environment. From our design, routing paths are always configured in optimized way, as well as path is recovered quickly when the mobility anchor of user is failed. From numerical analysis, comparing to other mobility scheme, result shows that the proposed scheme can reduce packet transmission cost and latency in tactical network model.

Performance analysis of Hierarchical Mobile IPv6 depending on the paging size (페이징 영역크기에 따른 계층적 이동 IPv6 의 성능분석)

  • 정계갑;이상욱;김준년
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.964-974
    • /
    • 2003
  • With increasing use of a personal mobile computer. the Mobile IPv6 is one of the main protocols that support mobility and complies with IPv6 specification. Similar to the mobile IPv6, the mobile IPv6 also has limitations on fast moving condition. The Hierarchical Mobile IPv6 is a solution that overcomes these limitations. The Hierarchical Mobile IPv6 is a micro mobility protocol that supports fast mobile IP handover and reduces signaling overhead with Mobility Anchor Point(MAP). But until now no paging method is applied to the Hierarchical Mobile IPv6 to reduce unnecessary signaling overhead and power consumption of mobile nodes. So, the paging mechanism for the Hierarchical Mobile IPv6 is proposed in this paper. the mechanism is implemented by making use of the destination option header and extension function and the last location algorithm. The results show that the Hierarchical Mobile IPv6 with the paging ability reduces the traffic of mobile networks by removing unnecessary binding update packet generated whenever handover takes place. Also, the larger the paging size is. the less the number of BU(Binding Update) massage generated.

MAP Load Control and Route Optimization in HMIPv6 (HMIPv6에서의 MAP의 부하 제어 및 경로 최적화)

  • Nam, Sung-Hyun;Lee, Kyung-Geun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.120-127
    • /
    • 2008
  • HMIPv6 draws lots of attentions in recent years for providing an efficient handover and reducing the signaling overhead. HMIPv6 employs MAP(Mobility Anchor Point) in order to minimize a signaling overhead and a local mobility management. MAP completes an efficient mobility management in HMIPv6 network environment with frequent handover. However, HMIPv6 causes load concentration at a paricular MAP and may have unnecessary latency between HN(Mobile Node) and CN(Correspondent Node) within the same network. A MAP may also disturb the route optimization in HMIPv6 network because all packets must be transmitted through a MAP. In this paper, we propose a scheme to optimize the route in HMIPv6 networks according to MAP load. We configure a threshold in order to support the better service into MAP domain. The packets do not pass through MAP and are directly transmitted to AR(Access Router) if the number of current MNs attached to the MAP exceed the desired threshold. We simulate the performance of the proposed scheme and compare with HMIPv6. Resultly, the proposed scheme reduces signaling costs and mitigates concentration of a paticular MAP as well.

An Efficient Hierarchical Authentication Scheme through Brokers in Mobile IPv6 Networks (브로커를 통한 모바일 IPv6 네트워크의 효율적인 계층적 인증기법)

  • Jung, Ha-Gwon;Jeong, Jong-Pil
    • Journal of Internet Computing and Services
    • /
    • v.12 no.4
    • /
    • pp.15-26
    • /
    • 2011
  • As quick and secure mobility service is becoming a critical issue in the ubiquitous environment. Internet Engineering Task Force (IETF) has done a lot of meaningful work in order to cope with the critical issues, which is a key technology of guaranteeing the legally and safely using of network resources, they has proposed Hierarchical Mobile IPv6 (HMIPv6) to complement for such problems as handover latency and signaling overhead in existing MIPv6. Most of the current research about HMIPv6 focuses on how to optimize the interactive processes between the HMIPv6 and AAA (Authentication, Authorization, Accounting) protocol. This paper describes a cost-effective hierarchical authentication scheme, which makes its focus on minimizing the authentication latency in AAA processing. In this scheme, a hierarchical AAA architecture is proposed, in which the AAA servers are deployed on the Mobility Anchor Point (MAP), the Root AAA server manages several Leaf AAA servers and the Brokers on behalf of the AAA server in home domain. The simulation results shows that the proposed scheme reduces the handoff and authentication latency evidently compared to the previous traditional authentication combination modeling.

Explicit Path Assignment(EPA) Algorithm using the Cache Information of MAP in Nested Mobile Network of HMIPv6 (HMIPv6의 중첩된 이동 네트워크에서 MAP의 캐시 정보를 이용한 명시적 경로 지정(Explicit Path Assignment) 알고리즘)

  • Song, Ji-Young;Kim, Byung-Gi
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.6
    • /
    • pp.451-460
    • /
    • 2006
  • In HMIPv6, the nested mobile network because of the mobility of node and router can be constituted. Many subnets exist and many mobile router(MR)s and mobile node(MN)s activate in the nested mobile network. If the nested depth is deeper, the number of mobile router that packet goes through, increases and data transmission delay owing to this might be larger. This paper proposes EPA algorithm which finds out the path from Mobility Anchor Point(MAP) to a destination mobile node using the binding cache information of MAP and processes the path information by adding it to packet header. If we apply EAP algorithm, the quantity of unnecessary packet within MAP domain can be decreased. Also, the transmission delay can be decreased in a intermediate mobile router because it supports packet re-transmission just by simple packet substitution.

Robust Inter-MAP Binding Update Scheme in HMIPv6 (HMIPv6 네트워크에서 Robust 한 Inter-MAP 바인딩 업데이트 기법)

  • Jinwook Park;Jongpil Jeong;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1387-1390
    • /
    • 2008
  • In a wireless network, handover latency is very important in supporting user mobility with the required quality of service (QoS). In view of this many schemes have been developed which aim to reduce the handover latency. The Hierarchical Mobile IPv6 (HMIPv6) approach is one such scheme which reduces the high handover latency that arises when mobile nodes perform frequent handover in Mobile IPv6 wireless networks. Although HMIPv6 reduces handoff latency, failures in the mobility anchor point (MAP) results in severe disruption or total disconnection that can seriously affect user satisfaction in ongoing sessions between the mobile and its correspondent nodes. HMIPv6 can avoid this situation by using more than one mobility anchor point for each link. In [3], an improved Robust Hierarchical Mobile IPv6 (RH-MIPv6) scheme is presented which enhances the HMIPv6 method by providing a fault-tolerant mobile service using two different MAPs (Primary and Secondary). It has been shown that the RH-MIPv6 scheme can achieve approximately 60% faster recovery times compared with the standard HMIPv6 approach. However, if mobile nodes perform frequent handover in RH-MIPv6, these changes incur a high communication overhead which is configured by two local binding update units (LBUs) as to two MAPs. To reduce this communication overhead, a new cost-reduced binding update scheme is proposed here, which reduces the communication overhead compared to previous schemes, by using an increased number of MAP switches. Using this new proposed method, it is shown that there is a 19.6% performance improvement in terms of the total handover latency.

Mobility and QoS Support in 4G Wireless Networks

  • Kim Taehyoun;Lee Jaiyong
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.178-191
    • /
    • 2005
  • Fourth-generation (4G) wireless networks will be the IP-based cellular networks integrating Internet with the existing cellular networks. Two important issues should be concerned in the IP-based cellular networks, IP mobility, and quality-of-service (QoS) guarantees. In this paper, we proposed two mechanisms to solve the problems with IP mobility and RSVP-based QoS provisioning. First, virtual-IP (VIP) allocation scheme in areas with a large rate of handoff can minimize the wireless signaling overhead due to IP mobility. The access routers (ARs) create dynamically the VIP zone by using the measured handoff rate derived from the history of the handoff into neighboring ARs. We show that VIP allocation scheme reduces the binding update messages in the wireless link than hierarchical mobile IPv6. Second, the new advance resource reservation protocol called proportional aggregate RSVP (PA-RSVP) can minimize waste of bandwidth and soft state refresh overhead due to IP mobility. It allocates the bandwidth in advance between the mobility anchor point and neighboring ARs using proportional aggregate reservation. We also show that PA-RSVP provides an improved performance over existing protocols.

A Study on Delegated-Authentication AAA Model in Hierarchical Mobile IPv6 Environment (Hierarchical Mobile IPv6 환경에서 AAA 인증 위임 모델에 관한 연구)

  • 송주용;송주석;김현곤
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.736-738
    • /
    • 2003
  • Hierarchical Mobile IP(HMW)는 Micro Mobility 관리를 위한 효율적인 방안을 제공한다. 즉, HMIP 환경에서는 Mobility Anchor Point(MAP) 관리 도메인내의 이동시 MN의 지역 바인딩 갱신(Local Binding Update) 메시지를 MAP에서 처리함으로써, 홈 도메인과의 등록 메시지 교환량을 감소시킬 수 있다. 그러나 MAP 관리 도메인과 MN 사이에는 기 설정된 비밀 정보가 존재하지 않기 때문에, 사용자 이동시 필요한 인증을 수행하기 위해서는 MN과 홈 도메인과의 정보 교환이 요구된다. 본 논문에서는 HMIP 환경에서 사용자의 인증을 위해 Diameter Mobile TPv6 응용을 적용한 모델을 제시한다. 이와 함께, MAP와 연계된 방문망의 AAA 서버로의 인증 권한 위임을 통해, 홈 도메인과의 정보 교환을 감소시키는 효율적인 Micro Mobility 관리 방안을 제공한다.

  • PDF